簡易檢索 / 詳目顯示

研究生: 陳可桀
Chen, Ke-Jie
論文名稱: 鎳鐵合金/釓雙層結構之自旋轉矩鐵磁共振
Spin-torque ferromagnetic resonance of Permalloy/Gadolinium bilayers
指導教授: 江佩勳
Jiang, Pei-hsun
口試委員: 張書維
Chang, Shu-Wei
趙宇強
Chao, Yu-Chiang
江佩勳
Jiang, Pei-hsun
口試日期: 2023/07/26
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 90
中文關鍵詞: 自旋轉矩鐵磁共振自旋軌道轉矩自旋霍爾角
英文關鍵詞: Gadolinium, Spin-torque ferromagnetic resonance, Spin orbit torque, Spin Hall angle.
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202301315
論文種類: 學術論文
相關次數: 點閱:141下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 稀土金屬釓(Gadolinium, Gd)的目前被認為具有強自旋軌道耦合(Spin orbital coupling, SOC)是具有自旋流(Spin current)現象的材料,且在低 於室溫的居里溫度,會從順磁性轉變到鐵磁性。因此本研究利用電子束蒸 鍍製作了鎳鐵合金(Ni80Fe20, Permalloy, Py)及釓(Gadolinium, Gd)雙層 結構,並觀測自旋轉矩鐵磁共振(Spin-torque ferromagnetic resonance, ST- FMR)現象來探討自旋流造成的自旋軌道轉矩(Spin orbit torque, SOT)貢 獻,最終透過分析找出代表 Gd 自旋-電荷的轉換效率(Spin-charge conversion efficiency)的自旋霍爾角(Spin Hall angle, 𝜃SH)。
    接著也將此雙層結構在低溫中進行變溫 ST-FMR 測量,並藉由分析飽 和磁化強度(Saturationmagnetization, 𝑀S)及𝜃SH探討低溫下對於溫度的依 賴性並觀察在 Gd 臨界溫度下的磁性相變的影響。此外在 80K 以下 ST-FMR 數據出現一些變化,對於 SOT 及𝜃SH有顯著的影響,我們認為在 ST-FMR 的訊號中有可能混入了不同的貢獻,並在低於 80K 時急遽的增強。

    Gadolinium (Gd), a rare-earth metal, is currently recognized as a material exhibiting strong spin-orbit coupling (SOC) and spin current phenomena. It transits from paramagnetic to ferromagnetic behavior at Curie temperature which is lower than room temperature. In this study, Permalloy (Ni80Fe20, Py) and Gd bilayer structure were fabricated using electron beam evaporation. The spin-torque ferromagnetic resonance (ST-FMR) was observed to investigate the contribution of spin orbit torque (SOT) induced by spin current. The spin Hall angle (θSH), representing the spin-charge conversion efficiency of Gd, was determined through analysis. Additionally, temperature-dependent ST-FMR measurements were conducted at low temperatures, and the dependence of saturation magnetization (MS) and θSH on temperature was analyzed to explore the temperature dependence of the bilayer structure and observe the effects of the magnetic phase transition at the Curie temperature of Gd. Furthermore, some variations were observed in the ST-FMR data below 80 K, significantly affecting SOT and θSH. We speculate that different contributions may be mixed in the ST- FMR signals, leading to a pronounced enhancement below 80 K.

    致謝 i 摘要 iii Abstract iv 圖次 ix 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 3 第二章 文獻回顧 4 2.1 理論研究 4 2.1.1 鐵磁材料 4 2.1.2 磁異向性 7 2.1.3 吉爾伯特阻尼 9 2.1.4 鐵磁共振 10 2.1.5 自旋霍爾效應 15 2.1.6 自旋泵補 17 2.1.7 自旋轉矩鐵磁共振 18 2.1.8 拉什巴-埃德爾斯坦效應 21 2.2 相關研究探討 23 2.2.1 鎳鐵合金的鐵磁共振 23 2.2.2 不同材料的自旋轉矩鐵磁共振 25 2.2.3 釓金屬相關研究 33 第三章 研究方法 41 3.1 樣品製備 41 3.1.1 電子束蒸鍍 41 3.1.2 黃光微影技術 43 3.1.3 離子束蝕刻 46 3.1.4 共平面波導 48 3.1.5 舉離 50 3.2 量測系統 52 3.2.1 製作量測載台 52 3.2.2 室溫FMR量測系統 54 3.2.3 室溫ST-FMR量測系統 56 3.2.4 低溫量測系統 58 第四章 實驗結果與討論 62 4.1 FMR量測 62 4.2 ST-FMR量測 62 4.2.1 室溫300K的ST-FMR 62 4.2.2 室溫300K改變外加磁場角度的ST-FMR 67 4.2.3 低溫下變溫的ST-FMR 69 第五章 結論與未來展望 75 5.1 結論 75 5.2 未來展望 76 5.2.1 確認80K以下的ST-FMR變化來源 76 5.2.2 分析有效阻尼探討可能的介面效應 77 5.2.3 探討金屬氧化對轉換效率的影響 77 5.2.4 添加中間層 78 5.2.5 探討逆自旋霍爾效應的在ST-FMR貢獻 78 5.2.6 探討τFL與τDL效率 79 Appendix A.研究問題改善 81 A.1 顯影液溶解氧化鋁 81 A.2 黃光微影製程改善 81 A.3 離子束蝕刻改善 82 A.4 舉離製程改善 83 A.5 低溫量測問題改善 84 A.6 樣品變質 84 參考文獻 85

    Nguyen, M.-H. and C.-F. Pai, Spin–orbit torque characterization in a nutshell. APL Materials, 2021. 9(3): p. 030902.
    Liu, L., et al., Spin-torque ferromagnetic resonance induced by the spin Hall effect. Physical review letters, 2011. 106(3): p. 036601.
    Dyakonov, M.I. and V. Perel, Current-induced spin orientation of electrons in semiconductors. Physics Letters A, 1971. 35(6): p. 459-460.
    Sinha, S., P. Meshram, and B.D. Pandey, Metallurgical processes for the recovery and recycling of lanthanum from various resources—A review. Hydrometallurgy, 2016. 160: p. 47-59.
    Tanaka, T. and H. Kontani, Intrinsic spin and orbital Hall effects in heavy-fermion systems. Physical Review B, 2010. 81(22): p. 224401.
    Brout, R. and H. Suhl, Effects of spin-orbit coupling in rare earth metals, and in solutions of rare earth metals. Physical Review Letters, 1959. 2(9): p. 387.
    Reynolds, N., et al., Spin Hall torques generated by rare-earth thin films. Physical Review B, 2017. 95(6): p. 064412.
    Khodadadi, B., et al., Enhanced spin pumping near a magnetic ordering transition. Physical Review B, 2017. 96(5): p. 054436.
    Bansal, R., N. Chowdhury, and P. Muduli, Proximity effect induced enhanced spin pumping in Py/Gd at room temperature. Applied Physics Letters, 2018. 112(26): p. 262403.
    Zhang, P., et al., Variation of effective damping with temperature in permalloy/Gd heterostructures. Physical Review B, 2020. 102(17): p. 174439.
    Zhou, K., et al., Efficient characteristics of exchange coupling and spin–flop transition in Py/Gd bilayer using anisotropic magnetoresistance. Applied Physics Letters, 2023. 122(10).
    Liu, F., et al., Phase Transition and Oxidation Dependence of Charge–Spin Conversion in Rare‐Earth Gadolinium. physica status solidi (RRL)–Rapid Research Letters, 2022. 16(11): p. 2200167.
    Freedman, R.A., T. Sandin, and A.L. Ford, University physics. 1996: Addison-Wesley.
    Kittel, C. and P. McEuen, Introduction to solid state physics. 2018: John Wiley & Sons.
    Hubert, A. and R. Schäfer, Magnetic domains: the analysis of magnetic microstructures. 2008: Springer Science & Business Media.
    Brodusch, N., et al., Magnetic Domain Imaging. Field Emission Scanning Electron Microscopy: New Perspectives for Materials Characterization, 2018: p. 107-113.
    Aharoni, A., Brown’s “fundamental theorem” revisited. Journal of Applied Physics, 2001. 90(9): p. 4645-4650.
    Jiles, D.C. and D.L. Atherton, Theory of ferromagnetic hysteresis. Journal of magnetism and magnetic materials, 1986. 61(1-2): p. 48-60.
    Stöhr, J. and H.C. Siegmann, Magnetism. Solid-State Sciences. Springer, Berlin, Heidelberg, 2006. 5: p. 236.
    Li, Y., et al., Suppressing Magnetic Damping Related to Two-Magnon Scattering in Ultrathin NiFe Films by Interface Engineering. The Journal of Physical Chemistry C, 2022. 126(17): p. 7748-7754.
    Xu, Z., K. Zhang, and J. Li, Disentangling intrinsic and extrinsic Gilbert damping. Physical Review B, 2021. 104(22): p. 224404.
    Beiser, A., Concepts of modern physics. 2003.
    Griffiths, J.H., Anomalous high-frequency resistance of ferromagnetic metals. Nature, 1946. 158(4019): p. 670-671.
    Kittel, C., Ferromagnetic resonance. J. phys. radium, 1951. 12(3): p. 291-302.
    Slater, J.C., Quantum theory of atomic structure. 1 (1960). 1960: MacGraw-Hill.
    Landau, L. and E. Lifshitz, On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, in Perspectives in Theoretical Physics. 1992, Elsevier. p. 51-65.
    Mizukami, S.M.S., Y.A.Y. Ando, and T.M.T. Miyazaki, The study on ferromagnetic resonance linewidth for NM/80NiFe/NM (NM= Cu, Ta, Pd and Pt) films. Japanese journal of applied physics, 2001. 40(2R): p. 580.
    Zhu, Z., et al., Enhancement of damping in FeNiN film due to two-magnon scattering effect. Applied Physics Letters, 2018. 113(23): p. 232402.
    Taniguchi, T. and H. Imamura, Spin pumping in ferromagnetic multilayers. Modern Physics Letters B, 2008. 22(30): p. 2909-2929.
    Iida, S., The difference between gilbert's and landau-lifshitz's equations. Journal of Physics and Chemistry of Solids, 1963. 24(5): p. 625-630.
    Longo, E., et al., Large Spin‐to‐Charge Conversion at Room Temperature in Extended Epitaxial Sb2Te3 Topological Insulator Chemically Grown on Silicon. Advanced Functional Materials, 2022. 32(4): p. 2109361.
    Murakami, S., N. Nagaosa, and S.-C. Zhang, Dissipationless quantum spin current at room temperature. Science, 2003. 301(5638): p. 1348-1351.
    Valenzuela, S.O. and M. Tinkham, Direct electronic measurement of the spin Hall effect. Nature, 2006. 442(7099): p. 176-179.
    Seki, T., et al., Giant spin Hall effect in perpendicularly spin-polarized FePt/Au devices. Nature materials, 2008. 7(2): p. 125-129.
    Brataas, A., et al., Spin pumping and spin transfer. Spin current, 2012. 17: p. 87-135.
    Zhang, W., et al., Research Update: Spin transfer torques in permalloy on monolayer MoS2. APL Materials, 2016. 4(3): p. 032302.
    Guimaraes, M.H., et al., Spin–orbit torques in NbSe2/permalloy bilayers. Nano letters, 2018. 18(2): p. 1311-1316.
    Wang, Y., et al., Determination of intrinsic spin Hall angle in Pt. Applied Physics Letters, 2014. 105(15): p. 152412.
    Zhang, W., et al., All-electrical manipulation of magnetization dynamics in a ferromagnet by antiferromagnets with anisotropic spin Hall effects. Physical Review B, 2015. 92(14): p. 144405.
    Zhang, W., et al., Role of transparency of platinum–ferromagnet interfaces in determining the intrinsic magnitude of the spin Hall effect. Nature physics, 2015. 11(6): p. 496-502.
    Sklenar, J., et al., Spin Hall effects in metallic antiferromagnets–perspectives for future spin-orbitronics. AIP Advances, 2016. 6(5): p. 055603.
    Pfeffer, P. and W. Zawadzki, Spin splitting of conduction subbands in III-V heterostructures due to inversion asymmetry. Physical Review B, 1999. 59(8): p. R5312.
    Manchon, A., et al., New perspectives for Rashba spin–orbit coupling. Nature materials, 2015. 14(9): p. 871-882.
    Rojas-Sánchez, J.-C., et al., Spin to charge conversion at room temperature by spin pumping into a new type of topological insulator: α-Sn films. Physical review letters, 2016. 116(9): p. 096602.
    Shen, K., G. Vignale, and R. Raimondi, Microscopic theory of the inverse Edelstein effect. Physical review letters, 2014. 112(9): p. 096601.
    Sánchez, J.R., et al., Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials. Nature communications, 2013. 4(1): p. 2944.
    Lesne, E., et al., Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. Nature materials, 2016. 15(12): p. 1261-1266.
    Zhao, Y., et al., Experimental investigation of temperature-dependent Gilbert damping in permalloy thin films. Scientific reports, 2016. 6(1): p. 1-8.
    Liu, L., et al., Spin-torque switching with the giant spin Hall effect of tantalum. Science, 2012. 336(6081): p. 555-558.
    Pai, C.-F., et al., Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Applied Physics Letters, 2012. 101(12): p. 122404.
    Mellnik, A., et al., Spin-transfer torque generated by a topological insulator. Nature, 2014. 511(7510): p. 449-451.
    Zhang, W., et al., Giant facet-dependent spin-orbit torque and spin Hall conductivity in the triangular antiferromagnet IrMn3. Science Advances, 2016. 2(9): p. e1600759.
    An, H., et al., Spin–torque generator engineered by natural oxidation of Cu. Nature communications, 2016. 7(1): p. 13069.
    Yang, L., et al., Maximizing spin–orbit torque efficiency of Ta (O)/Py via modulating oxygen-induced interface orbital hybridization. Applied Physics Letters, 2021. 118(3): p. 032405.
    Haxel, G., Rare earth elements: critical resources for high technology. Vol. 87. 2002: US Department of the Interior, US Geological Survey.
    Ueda, K., et al., Effect of rare earth metal on the spin-orbit torque in magnetic heterostructures. Applied Physics Letters, 2016. 108(23): p. 232405.
    Wong, Q., et al., Enhanced spin-orbit torques in rare-earth Pt/[Co/Ni] 2/Co/Tb systems. Physical Review Applied, 2019. 11(2): p. 024057.
    Fan, W., et al., Investigation of magnetization dynamics damping in Ni80Fe20/Nd-Cu bilayer at room temperature. AIP Advances, 2018. 8(5): p. 056325.
    Woltersdorf, G., et al., Damping by slow relaxing rare earth impurities in Ni 80 Fe 20. Physical review letters, 2009. 102(25): p. 257602.
    Shaw, J.M., et al., Precise determination of the spectroscopic g-factor by use of broadband ferromagnetic resonance spectroscopy. Journal of Applied Physics, 2013. 114(24): p. 243906.
    Beaujour, J.-M., et al., Ferromagnetic resonance study of polycrystalline cobalt ultrathin films. Journal of applied physics, 2006. 99(8).
    Reiss, G., et al., Presence and absence of antiferromagnetic coupling and giant magnetoresistance in sputtered and evaporated permalloy/copper multilayers. Journal of magnetism and magnetic materials, 1998. 184(3): p. 281-288.
    Parkin, S., et al., Giant magnetoresistance and enhanced antiferromagnetic coupling in highly oriented Co/Cu (111) superlattices. Physical Review B, 1992. 46(14): p. 9262.
    Karimeddiny, S., et al., Transverse and longitudinal spin-torque ferromagnetic resonance for improved measurement of spin-orbit torque. Physical Review Applied, 2020. 14(2): p. 024024.
    Ben-Shalom, R., et al., Determination of the spin Hall angle by the inverse spin Hall effect, device level ferromagnetic resonance, and spin torque ferromagnetic resonance: A comparison of methods. Applied Physics Letters, 2021. 119(4): p. 042401.
    Kondou, K., et al., Influence of inverse spin Hall effect in spin-torque ferromagnetic resonance measurements. Applied Physics Express, 2016. 9(2): p. 023002.
    Yang, P., et al., Enhancement of the spin–orbit torque efficiency in W/Cu/CoFeB heterostructures via interface engineering. Applied Physics Letters, 2020. 117(8): p. 082409.
    Kang, J.-H., et al., Control of electrical resistance and magnetoresistance by electric-field-driven oxygen ion migration in a single GdO x wire. NPG Asia Materials, 2020. 12(1): p. 44.
    Shi, S., et al., Efficient charge-spin conversion and magnetization switching through the Rashba effect at topological-insulator/Ag interfaces. Physical Review B, 2018. 97(4): p. 041115.
    Dong, J., et al., Enhancement of interfacial spin transparency in Py/NiO/Pt heterostructure. Applied Physics Letters, 2023. 122(12).
    Liu, Q., et al., Influence of the spin pumping induced inverse spin Hall effect on spin-torque ferromagnetic resonance measurements. Applied Physics Letters, 2021. 118(13).

    下載圖示
    QR CODE