簡易檢索 / 詳目顯示

研究生: 黃正偉
論文名稱: 玻璃基板粗糙度對於鎳鐵薄膜磁性特性的影響
Influence of Substrate Roughness on Magnetic Properties of Permalloy /Glass
指導教授: 盧志權
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 56
中文關鍵詞: 鎳鐵磁性材料薄膜粗糙度
英文關鍵詞: permalloy, magnetic material, thin films, roughness
論文種類: 學術論文
相關次數: 點閱:464下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究鎳鐵薄膜長在不同粗糙度的玻璃基板上的磁性行為。利用氫氟酸蝕刻玻璃的特性,玻璃基板的粗糙度是用氫氟酸的蝕刻時間來控制。在不同粗糙玻璃基板上用磁控式濺鍍成長鎳鐵薄膜(Py/G)。利用原子力顯微鏡來檢視分析平均粗糙度,利用統計方法定量找出各種表貌的相關參數如平均表面粗糙度、方均根粗糙度和偏度。樣品的磁性行為則是用鐵磁共振儀(FMR)和柯爾磁光儀(MOKE)量測得到。實驗使用蓋玻片當作基板,預前處裡是用丙酮經由超音波震盪器清洗,再由15%濃度氫氟酸經不同蝕刻時間來製造不同表面粗糙度,蝕刻完後用去離子水、丙酮同樣用超音波震盪器來清洗,再用氮氣來吹乾基板,最後利用磁控濺鍍鍍上5nm的鎳鐵薄膜。隨著表面蝕刻時間增加,玻璃基板的方均根高度變化並不顯著,最大的方均根高度約為3.75nm最小則是。偏度則和蝕刻時間有正相關。樣品磁性如矯頑場、鐵磁共振吸收半高寬和方均根高度並無明確的關聯。但發現偏度和磁性的相關性,偏度和矯頑場有反V字型的關係圖,最高的矯頑場為20Oe對應到的偏度約為1.5。偏度和鐵磁共振吸收半高寬呈現週期震盪且振幅越來越大週期約為偏度2。

    Magnetic properties of NiFe (permalloy, Py) film on glass was studied as function of the roughness of glass substrate. These films were fabricated by Magnetron sputtering on HF etching glass and the thickness of the Py film is fixed 5nm. The roughness was controlled and examined by etching time and AFM, respectively. Cover glass was sed as the substrate which was etched by soaking in 15% HF(Hydrogen Fluoride) solution to produce the roughness. Different states of surface roughness were controlled by the HF etching time up to 15 min. The surface morphology was examined by Atomic force microscopy (AFM), and hence average roughness, root mean square roughness and skewness were obtained for all samples. MOKE was used to measurement the magnetic hysteresis of the sample, while spin dynamics were characterized by a Vector Network Analyzer based ferromagnetic resonance (FMR) spectrometer. Therefore, squareness of hysteresis loop, saturation field, coercivity and damping constant can be analyzed as function of the roughness of Py film.There is no obvious change in root mean square roughness as the etching tike was increased. The minimum and maximum roughnesses were found to 0.25 and 3.75 nm at etching times of 0min and 3mins, respectively. In contrast, skewness was lineally proportional to the etching time. The magnetic properties, such as coercivity, FMR half-line width, have no clearly dependence on root mean square height. However, the dependence of these magnetic parameters on skewness was found. Coercivity showed an inverse V-shpae relationship with increasing skewness that the maximum coercivity of 20Oe is at skewness of 1.5. The FMR resonant field and line width at half maximum height exhibited oscillating behavior as skewness was increased. The periodicity of skewness of this oscillation was about 2.

    目錄 第一章 緒論 1 1.1前言 1 1.2研究動機 2 第二章 文獻回顧 5 2.1磁性的種類 5 2.2柯爾磁光效應Magneto-optical Kerr effect 8 2.3 鐵磁共振 Ferromagnetic resonance 13 2.4 磁區 magnetic domain 18 2.5 磁壁domain wall 20 2.6 磁滯曲線hysteresis loop 22 2.7 Stoner-Wohlfarth Model 23 2.8 氫氟酸 27 第三章 實驗原理以及實驗儀器 28 3.1 濺鍍 28 3.2 磁光柯爾量測儀 31 3.3鐵磁共振頻譜儀 32 3.4原子力顯微鏡 33 3.5實驗流程 35 第四章 實驗結果 38 4.1 表面粗糙度參數定義 38 4.2 鎳鐵薄膜粗糙度 41 4.3 矯頑場和表面粗糙度 45 4.4 磁滯曲線和表面粗糙度的關係 47 4.5 鐵磁共振吸收半高寬和表面粗糙度 51 第五章 結論 55 參考資料 56

    [1] W.D.Doyle, S.Stinnett, C.Dawson and L.He J.Magn. Soc. Jpn. 22,91 (1998)
    [2] Chun-Yeol You and Sung-Chul Shina Appl. Phys. Lett. 69, 1315 (1996)
    [3] Alex Hubert and Rudolf Schafer Magnetic Domain: The Analysis of Magnetic Microstructures p.25~p.28
    [4] R. P. Hunt, J. Appl. Phys. 38, 1652 (1967)
    [5] Y. J. Yang and M. R. Scheinfein, J. Appl. Phys. 74, 6810 (1993)
    [6] J. Smit, H.G. Beljers, Philips Res. Rep. 10, 113(1955).
    [7] L. Baselgia, M. Warden, F. Waldner, S.L. Hutton, J.E. Drumheller, Y.Q. He, P.E. Wigen, M. Marysko,Phys. Rev. B 38, 2237 (1988).
    [8] Alex Hubert and Rudolf Schafer Magnetic Domain: The Analysis of Magnetic Microstructures p.203~p.207
    [9] Stoner E C and Wohlfarth E P (1948), Phil. Trans. Roy. Soc. A240:599–642
    [10] Patrick Ayotte, Martin Hébert, and Patrick Marchand J. Chem. Phys. 123, 184501
    (2005)
    [11] A. S. Dzhumaliev, Yu. V. Nikulin and Yu. A. Filimonov Journal of Communications Technology and Electronics Volume 54, Issue 3 , pp 331-335
    [12] V. I. Malyutin, V. E. Osukovskii, Yu. D. Vorobiev, et al., Phys. Status Solidi A 65(1), 45 (1981)
    [13] M. Li, Y.-P. Zhao, G.-C. Wang, and H.-G. Min Journal of Applied Physics Volume 83 Issue 11
    [14] Kobayashi, K. Inaba, N. ; Fujita, N. ; Sudo, Y. ; Tanaka, T. ; Ohtake, M. ; Futamoto, M. ; Kirino, F.Magnetics, IEEE Transactions on Volume:45 , Issue: 6
    [15] H. Suhl Phys. Rev. 97, 555–557 (1955)
    [16] L. NEEL, Compt. Rend. 241(1955) 533
    [17] Krishal Patel, Colin S. Doyle, Daisuke Yonekura, Bryony J. James Volume 204,
    Issues 21-22, 15 August Pages 3567-3572

    下載圖示
    QR CODE