研究生: |
陳峻逸 Chen, Jyun-Yi |
---|---|
論文名稱: |
基於知識追蹤與強化式學習之適性化學習路徑推薦系統 Adaptive Learning Path Recommendation System Based on Knowledge Tracing and Reinforcement Learning |
指導教授: |
賴以威
Lai, I-Wei |
口試委員: |
賴以威
Lai, I-Wei 蘇崇彥 Su, Chung-Yen 周建興 Chou, Chein-Hsing |
口試日期: | 2024/06/12 |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 教育科技 、適性化教育 、學習路徑 、知識追蹤 、強化式學習 |
英文關鍵詞: | educational technology, adaptive learning, learning path, knowledge tracing, reinforcement learning |
研究方法: | 實驗設計法 、 比較研究 、 觀察研究 、 現象分析 |
DOI URL: | http://doi.org/10.6345/NTNU202400842 |
論文種類: | 學術論文 |
相關次數: | 點閱:172 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出了一個基於知識追蹤與強化式學習的適性化學習路徑推薦系統,旨在提供更有效的學習體驗。透過結合知識追蹤模型與強化式學習演算法,我們的系統能夠對學生的學習狀態進行精確評估,從而為每位學生設計最佳的學習路徑,以符合其個別的學習需求和能力水平。本系統的實驗結果顯示,我們的適性化學習路徑推薦能有效地幫助學生高效地達成學習目標。
針對知識追蹤任務中常見的資料不平衡問題,本研究提出了一種創新的資
料去重複方法,有效提高了模型的學習診斷效能。學習路徑的生成,則是採用深度強化式學習演算法來實現。
為了進一步提升系統的適應性和可靠性,本論文引入了虛擬學生的概念。
通過模擬大量虛擬學生數據,本系統能夠對學習路徑推薦策略進行有效的優化,從而提升系統的整體性能和穩定性。此方法不僅提高了教學模型的適應性,也為未來教育科技應用提供了新的研究方向和可能性。
This research presents an adaptive learning path recommendation system based on knowledge tracing and reinforcement learning to enhance learning experiences. By integrating knowledge tracing models with reinforcement learning algorithms, our system accurately assesses student learning states and designs optimal learning paths tailored to individual needs. Experimental results show that our recommendations effectively help students achieve their learning goals efficiently.
To address data imbalance in knowledge tracing tasks, we introduce an innovative data deduplication method that improves model performance. Learning paths are generated using deep reinforcement learning algorithms.
We also introduce the concept of virtual students to simulate data, optimizing learning path recommendations and improving system performance and stability. This approach enhances the adaptability of the instructional model and opens new research directions for educational technology applications.
A. Alam, S. Ullah, and N. Ali, “The effect of learning-based adaptivity on students' performance in 3d-virtual learning environments,”IEEE Access, vol. 6, pp. 3400–3407, 2018.
Y. Li, Z. Shao, X. Wang, X. Zhao, and Y. Guo, “A concept map-based learning paths automatic generation algorithm for adaptive learning systems,” IEEE Access, vol. 7, pp. 245–255, 2019.
Z. Shou, X. Lu, Z. Wu, H. Yuan, H. Zhang, and J. Lai, “On learning path planning algorithm based on collaborative analysis of learning behavior,” IEEE Access, vol. 8, pp. 119863–119879, 2020.
N. T. Son, J. Jaafar, I. A. Aziz, and B. N. Anh, “Meta-heuristic algorithms for learning path recommender at mooc,” IEEE Access, vol. 9, pp. 59093–59107, 2021.
M. Z. Islam, R. Ali, A. Haider, M. Z. Islam, and H. S. Kim, “Pakes: A reinforcement learning-based personalized adaptability knowledge extraction strategy for adaptive learning systems,” IEEE Access, vol. 9, pp. 155123–155137, 2021.
N. Singh, V. K. Gunjan, and M. M. Nasralla, “A parametrized comparative analysis of performance between proposed adaptive and personalized tutoring system “seis tutor"with existing online tutoring system,” IEEE Access, vol. 10, pp. 39376–39386, 2022.
A. A. Qaffas, A. M. Idrees, A. E. Khedr, and S. A. Kholeif, “A smart testing model based on mining semantic relations,” IEEE Access, vol. 11, pp. 30237–30246, 2023.
C. Limongelli, F. Sciarrone, M. Temperini, and G. Vaste, “Adaptive learning with the ls-plan system: A field evaluation,” IEEE Transactions on Learning Technologies,
vol. 2, no. 3, pp. 203–215, 2009.
M. Salehi, I. Nakhai Kamalabadi, and M. B. Ghaznavi Ghoushchi, “An effective recommendation framework for personal learning environments using a learner preference tree and a ga,” IEEE Transactions on Learning Technologies, vol. 6, no. 4, pp. 350–363, 2013.
C. G. Brinton, R. Rill, S. Ha, M. Chiang, R. Smith, and W. Ju, “Individualization for education at scale: Miic design and preliminary evaluation,” IEEE Transactions on Learning Technologies, vol. 8, no. 1, pp. 136–148, 2015.
X.-L. Zheng, C.-C. Chen, J.-L. Hung, W. He, F.-X. Hong, and Z. Lin, “A hybrid trust based recommender system for online communities of practice,” IEEE Transactions on Learning Technologies, vol. 8, no. 4, pp. 345–356, 2015.
T.-Y. Hsu, C.-K. Chiou, J. C. Tseng, and G.-J. Hwang, “Development and evaluation of an active learning support system for context-aware ubiquitous learning,” IEEE
Transactions on Learning Technologies, vol. 9, no. 1, pp. 37–45, 2016.
C.-B. Yao, “Constructing a user-friendly and smart ubiquitous personalized learning environment by using a context-aware mechanism,” IEEE Transactions on Learning Technologies, vol. 10, no. 1, pp. 104–114, 2017.
E. Karataev and V. Zadorozhny, “Adaptive social learning based on crowdsourcing,”IEEE Transactions on Learning Technologies, vol. 10, no. 2, pp. 128–139, 2017.
L. Meng, W. Zhang, Y. Chu, and M. Zhang, “Ld–lp generation of personalized learning path based on learning diagnosis,” IEEE Transactions on Learning Technologies, vol. 14, no. 1, pp. 122–128, 2021.
A. Siren and V. Tzerpos, “Automatic learning path creation using oer: A systematic literature mapping,” IEEE Transactions on Learning Technologies, vol. 15, no. 4, pp. 493–507, 2022.
F. Okubo, T. Shiino, T. Minematsu, Y. Taniguchi, and A. Shimada, “Adaptive learning support system based on automatic recommendation of personalized review materials,” IEEE Transactions on Learning Technologies, vol. 16, no. 1, pp. 92–105, 2023.
B. Levy, A. Hershkovitz, M. Tabach, A. Cohen, A. Segal, and K. Gal,“Personalization in graphically rich e-learning environments for k-6 mathematics,”IEEE Transactions on Learning Technologies, vol. 16, no. 3, pp. 364–376, 2023.
H. Wan, Z. Zhong, L. Tang, and X. Gao, “Pedagogical interventions in spocs: Learning behavior dashboards and knowledge tracing support exercise recommendation,” IEEE Transactions on Learning Technologies, vol. 16, no. 3, pp. 431–442, 2023.
J. Vykopal, P. Seda, V. Švábenský, and P. Čeleda, “Smart environment for adaptive learning of cybersecurity skills,” IEEE Transactions on Learning Technologies, vol. 16, no. 3, pp. 443–456, 2023.
F. D. Pereira, L. Rodrigues, M. H. O. Henklain, H. Freitas, D. F. Oliveira, A. I. Cristea, L. Carvalho, S. Isotani, A. Benedict, M. Dorodchi, and E. H. T. de Oliveira,“Toward human–ai collaboration: A recommender system to support cs1 instructors to select problems for assignments and exams,” IEEE Transactions on Learning Technologies, vol. 16, no. 3, pp. 457–472, 2023.
H.-I. Liu and M.-N. Yang, “Qol guaranteed adaptation and personalization in elearning systems,” IEEE Transactions on Education, vol. 48, no. 4, pp. 676–687, 2005.
F. Colace and M. De Santo, “Ontology for e-learning: A bayesian approach,” IEEE Transactions on Education, vol. 53, no. 2, pp. 223–233, 2010.
J. Moreno-LeÓn, G. Robles, and M. RomÁn-GonzÁlez, “Towards data-driven learning paths to develop computational thinking with scratch,” IEEE Transactions on Emerging Topics in Computing, vol. 8, no. 1, pp. 193–205, 2020.
G. Sun, W. Wei, T. Cui, D. Xu, S. Chen, A. Shvonski, L. Li, J. Shen, and S. Garshasbi, “Adapting new learners and new resources to micro open learning via online computation,” IEEE Transactions on Computational Social Systems, vol. 9, no. 6, pp. 1807–1819, 2022.
F. Yang, F. W. B. Li, and R. W. H. Lau, “A fine-grained outcome-based learning path model,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 44, no. 2, pp. 235–245, 2014.
L. Pappano, “The year of the mooc,” 2012.L. Chen, P. Chen, and Z. Lin, “Artificial intelligence in education: A review,” IEEE
Access, vol. 8, pp. 75264–75278, 2020.
F. Martin, Y. Chen, R. L. Moore, and C. D. Westine, “Systematic review of adaptive learning research designs, context, strategies, and technologies from 2009 to 2018,”Educational Technology Research and Development, vol. 67, no. 6, pp. 1275–1301, 2019.
P. Kerr, “Adaptive learning,” ELT Journal, vol. 70, no. 1, pp. 88–93, 2016.
P. Brusilovsky and E. Millán, “User models for adaptive hypermedia and adaptive educational systems,” in The adaptive web, pp. 3–53, Springer, Berlin, Heidelberg, 2007.
S. Kalyuga, “Expertise reversal effect and its implications for learner-tailored instruction,” Educational Psychology Review, vol. 19, no. 4, pp. 509–539, 2007.
V. J. Shute and B. Towle, “Adaptive e-learning,” Educational Psychologist, vol. 38, no. 2, pp. 105–114, 2003.
A. T. Corbett and J. R. Anderson, “Knowledge tracing: Modeling the acquisition of procedural knowledge,” User Model. User-Adapted Interaction, vol. 4, no. 4, pp. 253–278, 1994.
J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” 2017.
V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.
T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra, “Continuous control with deep reinforcement learning,” 2015.
R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. MIT Press, 2018.
J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-dimensional continuous control using generalized advantage estimation,” 2015.
R. J. Williams, “Simple statistical gradient-following algorithms for connectionist reinforcement learning,” Machine learning, vol. 8, pp. 229–256, 1992.
V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” 2016.
H.-S. Chang, H.-J. Hsu, and K.-T. Chen, “Modeling exercise relationships in e learning: A unified approach,” pp. 532–535, 2015.
T. L. Friedman, The World is Flat: A Brief History of the Twenty-First Century. Farrar, Straus and Giroux, 2020.
J. H. Block and R. B. Burns, “Mastery learning,” Review of Research in Education, vol. 4, no. 1, pp. 3–49, 1976.
D. Cai, Y. Zhang, and B. Dai, “Learning path recommendation based on knowledge tracing model and reinforcement learning,” pp.1881–1885, 2019.
C. H. McGrath, B. Guerin, E. Harte, M. Frearson, and C. Manville, Learning gain in higher education. Santa Monica, CA: RAND Corporation, 2015.
W. Xia, H. Jiang, D. Feng, F. Douglis, P. Shilane, Y. Hua, M. Fu, Y. Zhang, and Y. Zhou, “A comprehensive study of the past, present, and future of data deduplication,” Proceedings of the IEEE, vol. 104, no. 9, pp. 1681–1710, 2016.