簡易檢索 / 詳目顯示

研究生: 陳峻逸
Chen, Jyun-Yi
論文名稱: 基於知識追蹤與強化式學習之適性化學習路徑推薦系統
Adaptive Learning Path Recommendation System Based on Knowledge Tracing and Reinforcement Learning
指導教授: 賴以威
Lai, I-Wei
口試委員: 賴以威
Lai, I-Wei
蘇崇彥
Su, Chung-Yen
周建興
Chou, Chein-Hsing
口試日期: 2024/06/12
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 82
中文關鍵詞: 教育科技適性化教育學習路徑知識追蹤強化式學習
英文關鍵詞: educational technology, adaptive learning, learning path, knowledge tracing, reinforcement learning
研究方法: 實驗設計法比較研究觀察研究現象分析
DOI URL: http://doi.org/10.6345/NTNU202400842
論文種類: 學術論文
相關次數: 點閱:172下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出了一個基於知識追蹤與強化式學習的適性化學習路徑推薦系統,旨在提供更有效的學習體驗。透過結合知識追蹤模型與強化式學習演算法,我們的系統能夠對學生的學習狀態進行精確評估,從而為每位學生設計最佳的學習路徑,以符合其個別的學習需求和能力水平。本系統的實驗結果顯示,我們的適性化學習路徑推薦能有效地幫助學生高效地達成學習目標。
    針對知識追蹤任務中常見的資料不平衡問題,本研究提出了一種創新的資
    料去重複方法,有效提高了模型的學習診斷效能。學習路徑的生成,則是採用深度強化式學習演算法來實現。
    為了進一步提升系統的適應性和可靠性,本論文引入了虛擬學生的概念。
    通過模擬大量虛擬學生數據,本系統能夠對學習路徑推薦策略進行有效的優化,從而提升系統的整體性能和穩定性。此方法不僅提高了教學模型的適應性,也為未來教育科技應用提供了新的研究方向和可能性。

    This research presents an adaptive learning path recommendation system based on knowledge tracing and reinforcement learning to enhance learning experiences. By integrating knowledge tracing models with reinforcement learning algorithms, our system accurately assesses student learning states and designs optimal learning paths tailored to individual needs. Experimental results show that our recommendations effectively help students achieve their learning goals efficiently.
    To address data imbalance in knowledge tracing tasks, we introduce an innovative data deduplication method that improves model performance. Learning paths are generated using deep reinforcement learning algorithms.
    We also introduce the concept of virtual students to simulate data, optimizing learning path recommendations and improving system performance and stability. This approach enhances the adaptability of the instructional model and opens new research directions for educational technology applications.

    第一章 介紹 1 1.1 研究動機 1 1.2 相關文獻 2 1.3 主要貢獻 5 1.4 論文架構 6 第二章 背景知識 7 2.1 線上學習 7 2.1.1 線上學習平台 7 2.1.2 線上學習工具 8 2.2 適性化學習 9 2.3 學習路徑 9 2.3.1 標準化學習路徑 9 2.3.2 適性化學習路徑 10 2.3.2.1 適性化參數 10 2.3.2.2 學習路徑生成方法 11 第三章 學習診斷模型 12 3.1 學習紀錄 12 3.2 知識狀態 12 3.2.1 知識水平 13 3.2.2 學習目標 13 3.3 知識追蹤模型 14 3.3.1 貝葉斯知識追蹤模型 14 3.3.2 深度知識追蹤模型 16 3.3.3 圖知識追蹤模型 17 3.3.4 注意力知識追蹤模型 17 3.3.5 模型優化函數 17 第四章 學習路徑生成 19 4.1 馬爾可夫決策過程 19 4.1.1 代理人-環境互動 20 4.1.2 狀態空間 23 4.1.3 動作空間 24 4.1.4 獎勵空間 25 4.1.5 動態函數 28 4.1.6 優化目的 30 4.1.7 回報與回合 31 4.1.8 價值函數與策略 34 4.1.9 最佳策略與最佳價值函數 37 4.1.10 最佳化與近似 41 4.2 強化式學習演算法 42 4.2.1 時序差分學習 42 4.2.1.1 SARSA 43 4.2.1.2 Q-學習 44 4.2.2 策略梯度方法 44 4.2.2.1 REINFORCE 45 4.2.2.2 演員-評論家方法 46 4.3 路徑生成策略最佳化 47 4.3.1 機率化表示 48 4.3.2 最大化累積獎勵 48 4.3.3 優勢演員-評論家演算法 49 4.3.4近端策略最佳化演算法 50 第五章 實驗架設與模擬結果 53 5.1 學習診斷模型 53 5.1.1 學習紀錄資料集 53 5.1.2 資料不平衡 54 5.1.3 資料去重複 55 5.1.4 效能評估 57 5.2 學習路徑生成 59 5.2.1 虛擬學生 59 5.2.2 效能評估 61 5.3 虛擬學生學習成效 63 5.3.1 學習成果 63 5.3.2 學習效率 63 5.4 虛擬學生學習過程 64 5.5 學習路徑多樣性 67 5.6 確定性狀態轉移的環境設置 68 5.6.1 學習路徑生成時間 72 第六章結論與未來研究 74 參考文獻 76

    A. Alam, S. Ullah, and N. Ali, “The effect of learning-based adaptivity on students' performance in 3d-virtual learning environments,”IEEE Access, vol. 6, pp. 3400–3407, 2018.
    Y. Li, Z. Shao, X. Wang, X. Zhao, and Y. Guo, “A concept map-based learning paths automatic generation algorithm for adaptive learning systems,” IEEE Access, vol. 7, pp. 245–255, 2019.
    Z. Shou, X. Lu, Z. Wu, H. Yuan, H. Zhang, and J. Lai, “On learning path planning algorithm based on collaborative analysis of learning behavior,” IEEE Access, vol. 8, pp. 119863–119879, 2020.
    N. T. Son, J. Jaafar, I. A. Aziz, and B. N. Anh, “Meta-heuristic algorithms for learning path recommender at mooc,” IEEE Access, vol. 9, pp. 59093–59107, 2021.
    M. Z. Islam, R. Ali, A. Haider, M. Z. Islam, and H. S. Kim, “Pakes: A reinforcement learning-based personalized adaptability knowledge extraction strategy for adaptive learning systems,” IEEE Access, vol. 9, pp. 155123–155137, 2021.
    N. Singh, V. K. Gunjan, and M. M. Nasralla, “A parametrized comparative analysis of performance between proposed adaptive and personalized tutoring system “seis tutor"with existing online tutoring system,” IEEE Access, vol. 10, pp. 39376–39386, 2022.
    A. A. Qaffas, A. M. Idrees, A. E. Khedr, and S. A. Kholeif, “A smart testing model based on mining semantic relations,” IEEE Access, vol. 11, pp. 30237–30246, 2023.
    C. Limongelli, F. Sciarrone, M. Temperini, and G. Vaste, “Adaptive learning with the ls-plan system: A field evaluation,” IEEE Transactions on Learning Technologies,
    vol. 2, no. 3, pp. 203–215, 2009.
    M. Salehi, I. Nakhai Kamalabadi, and M. B. Ghaznavi Ghoushchi, “An effective recommendation framework for personal learning environments using a learner preference tree and a ga,” IEEE Transactions on Learning Technologies, vol. 6, no. 4, pp. 350–363, 2013.
    C. G. Brinton, R. Rill, S. Ha, M. Chiang, R. Smith, and W. Ju, “Individualization for education at scale: Miic design and preliminary evaluation,” IEEE Transactions on Learning Technologies, vol. 8, no. 1, pp. 136–148, 2015.
    X.-L. Zheng, C.-C. Chen, J.-L. Hung, W. He, F.-X. Hong, and Z. Lin, “A hybrid trust based recommender system for online communities of practice,” IEEE Transactions on Learning Technologies, vol. 8, no. 4, pp. 345–356, 2015.
    T.-Y. Hsu, C.-K. Chiou, J. C. Tseng, and G.-J. Hwang, “Development and evaluation of an active learning support system for context-aware ubiquitous learning,” IEEE
    Transactions on Learning Technologies, vol. 9, no. 1, pp. 37–45, 2016.
    C.-B. Yao, “Constructing a user-friendly and smart ubiquitous personalized learning environment by using a context-aware mechanism,” IEEE Transactions on Learning Technologies, vol. 10, no. 1, pp. 104–114, 2017.
    E. Karataev and V. Zadorozhny, “Adaptive social learning based on crowdsourcing,”IEEE Transactions on Learning Technologies, vol. 10, no. 2, pp. 128–139, 2017.
    L. Meng, W. Zhang, Y. Chu, and M. Zhang, “Ld–lp generation of personalized learning path based on learning diagnosis,” IEEE Transactions on Learning Technologies, vol. 14, no. 1, pp. 122–128, 2021.
    A. Siren and V. Tzerpos, “Automatic learning path creation using oer: A systematic literature mapping,” IEEE Transactions on Learning Technologies, vol. 15, no. 4, pp. 493–507, 2022.
    F. Okubo, T. Shiino, T. Minematsu, Y. Taniguchi, and A. Shimada, “Adaptive learning support system based on automatic recommendation of personalized review materials,” IEEE Transactions on Learning Technologies, vol. 16, no. 1, pp. 92–105, 2023.
    B. Levy, A. Hershkovitz, M. Tabach, A. Cohen, A. Segal, and K. Gal,“Personalization in graphically rich e-learning environments for k-6 mathematics,”IEEE Transactions on Learning Technologies, vol. 16, no. 3, pp. 364–376, 2023.
    H. Wan, Z. Zhong, L. Tang, and X. Gao, “Pedagogical interventions in spocs: Learning behavior dashboards and knowledge tracing support exercise recommendation,” IEEE Transactions on Learning Technologies, vol. 16, no. 3, pp. 431–442, 2023.
    J. Vykopal, P. Seda, V. Švábenský, and P. Čeleda, “Smart environment for adaptive learning of cybersecurity skills,” IEEE Transactions on Learning Technologies, vol. 16, no. 3, pp. 443–456, 2023.
    F. D. Pereira, L. Rodrigues, M. H. O. Henklain, H. Freitas, D. F. Oliveira, A. I. Cristea, L. Carvalho, S. Isotani, A. Benedict, M. Dorodchi, and E. H. T. de Oliveira,“Toward human–ai collaboration: A recommender system to support cs1 instructors to select problems for assignments and exams,” IEEE Transactions on Learning Technologies, vol. 16, no. 3, pp. 457–472, 2023.
    H.-I. Liu and M.-N. Yang, “Qol guaranteed adaptation and personalization in elearning systems,” IEEE Transactions on Education, vol. 48, no. 4, pp. 676–687, 2005.
    F. Colace and M. De Santo, “Ontology for e-learning: A bayesian approach,” IEEE Transactions on Education, vol. 53, no. 2, pp. 223–233, 2010.
    J. Moreno-LeÓn, G. Robles, and M. RomÁn-GonzÁlez, “Towards data-driven learning paths to develop computational thinking with scratch,” IEEE Transactions on Emerging Topics in Computing, vol. 8, no. 1, pp. 193–205, 2020.
    G. Sun, W. Wei, T. Cui, D. Xu, S. Chen, A. Shvonski, L. Li, J. Shen, and S. Garshasbi, “Adapting new learners and new resources to micro open learning via online computation,” IEEE Transactions on Computational Social Systems, vol. 9, no. 6, pp. 1807–1819, 2022.
    F. Yang, F. W. B. Li, and R. W. H. Lau, “A fine-grained outcome-based learning path model,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 44, no. 2, pp. 235–245, 2014.
    L. Pappano, “The year of the mooc,” 2012.L. Chen, P. Chen, and Z. Lin, “Artificial intelligence in education: A review,” IEEE
    Access, vol. 8, pp. 75264–75278, 2020.
    F. Martin, Y. Chen, R. L. Moore, and C. D. Westine, “Systematic review of adaptive learning research designs, context, strategies, and technologies from 2009 to 2018,”Educational Technology Research and Development, vol. 67, no. 6, pp. 1275–1301, 2019.
    P. Kerr, “Adaptive learning,” ELT Journal, vol. 70, no. 1, pp. 88–93, 2016.
    P. Brusilovsky and E. Millán, “User models for adaptive hypermedia and adaptive educational systems,” in The adaptive web, pp. 3–53, Springer, Berlin, Heidelberg, 2007.
    S. Kalyuga, “Expertise reversal effect and its implications for learner-tailored instruction,” Educational Psychology Review, vol. 19, no. 4, pp. 509–539, 2007.
    V. J. Shute and B. Towle, “Adaptive e-learning,” Educational Psychologist, vol. 38, no. 2, pp. 105–114, 2003.
    A. T. Corbett and J. R. Anderson, “Knowledge tracing: Modeling the acquisition of procedural knowledge,” User Model. User-Adapted Interaction, vol. 4, no. 4, pp. 253–278, 1994.
    J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” 2017.
    V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.
    T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra, “Continuous control with deep reinforcement learning,” 2015.
    R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. MIT Press, 2018.
    J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-dimensional continuous control using generalized advantage estimation,” 2015.
    R. J. Williams, “Simple statistical gradient-following algorithms for connectionist reinforcement learning,” Machine learning, vol. 8, pp. 229–256, 1992.
    V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” 2016.
    H.-S. Chang, H.-J. Hsu, and K.-T. Chen, “Modeling exercise relationships in e learning: A unified approach,” pp. 532–535, 2015.
    T. L. Friedman, The World is Flat: A Brief History of the Twenty-First Century. Farrar, Straus and Giroux, 2020.
    J. H. Block and R. B. Burns, “Mastery learning,” Review of Research in Education, vol. 4, no. 1, pp. 3–49, 1976.
    D. Cai, Y. Zhang, and B. Dai, “Learning path recommendation based on knowledge tracing model and reinforcement learning,” pp.1881–1885, 2019.
    C. H. McGrath, B. Guerin, E. Harte, M. Frearson, and C. Manville, Learning gain in higher education. Santa Monica, CA: RAND Corporation, 2015.
    W. Xia, H. Jiang, D. Feng, F. Douglis, P. Shilane, Y. Hua, M. Fu, Y. Zhang, and Y. Zhou, “A comprehensive study of the past, present, and future of data deduplication,” Proceedings of the IEEE, vol. 104, no. 9, pp. 1681–1710, 2016.

    下載圖示
    QR CODE