研究生: |
吳婉鈴 Wu, Wan-Ling |
---|---|
論文名稱: |
自行車坐墊位置變化對女性的下肢關節運動學與運動表現的影響 Effect of cycle saddle position on low limb joint biomechanics and performance in female |
指導教授: |
相子元
Shiang, Tzyy-Yuang |
學位類別: |
碩士 Master |
系所名稱: |
運動競技學系 Department of Athletic Performance |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 60 |
中文關鍵詞: | 座墊高度 、踩踏效益 、動力學 |
英文關鍵詞: | Pedaling efficiency |
論文種類: | 學術論文 |
相關次數: | 點閱:184 下載:14 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目的:正確調整騎乘者的騎乘姿勢與結構調整,會讓傷害的產生減少、
達到更好的運動表現,因此藉由坐墊位置的調整,並建立找出適合女
性騎乘的最佳坐墊位置。故本研究的目的為針對一般女性改變自行車
不同坐墊位置對運動學、動力學、肌肉活化、踩踏效益的影響。方法:
招募14名女性,透過動作分析系統、踏板量測儀、肌電儀分別探討不
同坐墊位置 (上下、前後) 共九種情境之影響。統計方法採用二因子重
複量數變異數分析,顯著水準訂為α=.05。結果:坐墊位置越高膝、
踝關節活動度範圍會越大,髖關節未達顯著差異;臀大肌、股二頭肌
與腓腸肌越大有顯著差異;踩踏效益越差。坐墊位置越後面,各關節
活動度範圍越大,垂直踩踏衝量越大。結論:建議中間坐墊位置比較
適合一般女性之騎乘。
Purpose: The correct riding posture would reduce damage, and bring a
better cycling performance. Hence, the research aims to find out the best saddle position for the female by adjusting the position of the bike saddle. The study focus on how the different positions of bike saddle for the female will influence on kinematics, kinetics, EMG and the pedaling efficiency.
Method: We recruited 14 healthy female in this study. We observed
different of nine paddle positions (high to low; forward to backward) on the kinematics, kinetics, muscle activation and pedaling efficiency. The
repeated measure two-way ANOVA were used to determine the difference between nine positions. Significance level was set at α=.05.
Results: The higher the paddle position is, the more range of motion of the knee joint and ankle joint will be, while there is no significant difference on the hip joint. Second, the subjects with stronger Gluteus maximus, Biceps fermoris and Gastrocnemius have worse efficiency of paddle forces. Last, the backer the paddle position is, the bigger the range of motion and impulse will be.
Conclusion: The middle paddle position is ideal for average female.
胡名霞 (2006)。動作控制與動作學習(第二版)。新北市:金名圖書。
張柏苓 (2012)。不同阻力與不同座墊位置對自行車踩踏效率的影響 (未出版碩士論文)。國立臺灣師範大學,台北市。
張雅棻、蔡文鐘、鍾佳英、林瀛洲、陳玥岑、吳菁宜、林克忠 (2009)。改良式制動療法與雙側動作訓練對慢性中風病患之相對效應: 運動學分析。台灣復健醫學雜誌,(37),19-30。
黃雅瑛、吳菁宜、洪維憲、陳嘉玲、林克忠 (2006)。改良式制約誘發運動治療對中風患者療效之運動學分析。台灣醫學,10,319-327。
Albertus-Kajee, Y., Tucker, R., Derman, W., & Lambert, M. (2010). Alternative methods of normalising EMG during cycling. Journal of Electromyography and Kinesiology, 20(6), 1036-1043.
Ansley, L., & Cangley, P. (2009). Determinants of “optimal” cadence during cycling. European Journal of Sport Science, 9(2), 61-85.
Bini, M. R., Hume, P. A., & Croft, J. L. (2011). Effects of bicycle saddle height on knee injury risk and cycling performance. Sports Medicine, 41(6), 463-476.
Bini, R. R., Hume, P. A., Croft, J., & Kilding, A. E. (2013). Pedal force effectiveness in cycling: a review of constraints and training effects. Journal of Science and Cycling, 2(1), 11-24.
Bini, R. R., Hume, P. A., & Kilding, A. E. (2014). Saddle height effects on pedal forces, joint mechanical work and kinematics of cyclists and triathletes. European Journal of Sport Science, 14(1), 44-52.
Bini, R. R., Hume, P. A., Lanferdini, F. J., & Vaz, M. A. (2013). Effects of moving forward or backward on the saddle on knee joint forces during cycling. Physical Therapy in Sport, 14(1), 23-27.
Bini, R. R., Tamborindeguy, A. C., & Mota, C. B. (2010). Effects of saddle height, pedaling cadence, and workload on joint kinetics and kinematics during cycling. Journal of Sport Rehabilitation, 19(3), 301-314.
Bressel, E. (2001). The influence of ergometer pedaling direction on peak patellofemoral joint forces. Clinical Biomechanics, 16(5), 431-437.
Caimmi, M., Carda, S., Giovanzana, C., Maini, E. S., Sabatini, A. M., Smania, N., & Molteni, F. (2008). Using kinematic analysis to evaluate constraint-induced movement therapy in chronic stroke patients. Neurorehabilitation and Neural Repair, 22(1), 31-39.
Callaghan, M. J. (2005). Lower body problems and injury in cycling. Journal of Bodywork and Movement Therapies, 9(3), 226-236.
Candotti, C. T., Ribeiro, J., Soares, D. P., De Oliveira, A. R., Loss, J. F., & GUIMARÃES, A. C. S. (2007). Effective force and economy of triathletes and cyclists. Sports Biomechanics, 6(1), 31-43.
Diefenthaeler, F., Bini, R. R., Laitano, O. L., Guimarães, A. C. S., Nabinger, E., Carpes, F. P., . . . Coyle, E. F. (2006). Assessment of the Effects of Saddle Position on Cyclists' Pedaling Technique. Medicine & Science in Sports & Exercise, 38(5), S181.
Dorel, S., Couturier, A., & Hug, F. (2008). Intra-session repeatability of lower limb muscles activation pattern during pedaling. Journal of Electromyography and Kinesiology, 18(5), 857-865.
Duc, S., Bertucci, W., Pernin, J., & Grappe, F. (2008). Muscular activity during uphill cycling: effect of slope, posture, hand grip position and constrained bicycle lateral sways. Journal of Electromyography and Kinesiology, 18(1), 116-127.
Emanuele, U., Horn, T., & Denoth, J. (2011). Influence of racing position on cycling patterns [Abstract]. Porto, Portugal: 29th International Conference on Biomechanics in Sports.
Ericson, M. (1985). On the biomechanics of cycling. A study of joint and muscle load during exercise on the bicycle ergometer. Scandinavian Journal of Rehabilitation Medicine. Supplement, 16, 1-43.
Ericson, M. O., & Nisell, R. (1988). Efficiency of pedal forces during ergometer cycling. International Journal of Sports Medicine, 9(02), 118-122.
Faria, E. W., Parker, D. L., & Faria, I. E. (2004). The science of cycling: factors affecting performance-part 2. Sports Medicine, 35(4), 313-337.
Faria, E. W., Parker, D. L., & Faria, I. E. (2005). The science of cycling. Sports Medicine, 35(4), 285-312.
Farina, D., Macaluso, A., Ferguson, R. A., & De Vito, G. (2004). Effect of power, pedal rate, and force on average muscle fiber conduction velocity during cycling. Journal of Applied Physiology, 97(6), 2035-2041.
Ferrer-Roca, V., Roig, A., Galilea, P., & García-López, J. (2012). Influence of saddle height on lower limb kinematics in well-trained cyclists: Static vs. dynamic evaluation in bike fitting. The Journal of Strength & Conditioning Research, 26(11), 3025-3029.
Hansen, E. A., Voigt, M., Kersting, U. G., & Madeleine, P. (2014). Frequency and pattern of rhythmic leg movement in humans after fatiguing exercises. Motor Control, 18(3), 297-309.
Holmes, J., Pruitt, A., & Whalen, N. (1994). Lower extremity overuse in bicycling. Clinics in Sports Medicine, 13(1), 187-205.
Hug, F., & Dorel, S. (2009). Electromyographic analysis of pedaling: a review. J Electromyogr Kinesiol, 19(2), 182-198.
Jorge, M., & Hull, M. (1986). Analysis of EMG measurements during bicycle pedalling. Journal of Biomechanics, 19(9), 683-694.
KaMen, G., Robertson, D., Hamill, J., Caldwell, G., & Kamen, G. (2004). Research Methods in Biomechanics. Champaign, IL: Human Kinetics.
Laplaud, D., Hug, F., & Grélot, L. (2006). Reproducibility of eight lower limb muscles activity level in the course of an incremental pedaling exercise. Journal of Electromyography and Kinesiology, 16(2), 158-166.
Lopes, A. D., Alouche, S. R., Hakansson, N., & Cohen, M. (2014). Electromyography during pedaling on upright and recumbent ergometer. International Journal of Sports Physical Therapy, 9(1), 76.
Lu, T.-W., Yen, H.-C., & Chen, H.-L. (2008). Comparisons of the inter-joint coordination between leading and trailing limbs when crossing obstacles of different heights. Gait & posture, 27(2), 309-315.
Lucia, A., Juan, A., Montilla, M., Canete, S., Santalla, A., Earnest, C., & Perez, M. (2004). In professional road cyclists, low pedaling cadences are less efficient. Medicine and science in sports and exercise, 36(6), 1048-1054.
MacIntosh, B. R., Neptune, R. R., & Horton, J. F. (2000). Cadence, power, and muscle activation in cycle ergometry. Medicine & Science in Sports & Exercise, 32(7), 1281-1287.
Marsh, A. P., & Martin, P. E. (1995). The relationship between cadence and lower extremity EMG in cyclists and noncyclists. Medicine & Science in Sports & Exercise, 27(2), 217-225.
Marsh, A. P., Martin, P. E., & Foley, K. O. (2000). Effect of cadence, cycling experience, and aerobic power on delta efficiency during cycling. Medicine & Science in Sports & Exercise, 32(9), 1630-1634.
McCoy, R. W., & Gregor, R. (1989). The Effect of Varying Seat Position on Knee Loads During Cycling.: 469. Medicine & Science in Sports & Exercise, 21(2), S79.
McCrea, P. H., Eng, J. J., & Hodgson, A. J. (2002). Biomechanics of reaching: clinical implications for individuals with acquired brain injury. Disability & Rehabilitation, 24(10), 534-541.
Neptune, R., Kautz, S., & Hull, M. (1997). The effect of pedaling rate on coordination in cycling. Journal of Biomechanics, 30(10), 1051-1058.
Nordeen-Snyder, K. S. (1977). The effect of bicycle seat height variation upon oxygen consumption and lower limb kinematics. Medicine & Science in Sports & Exercise, 9(2), 113-117.
Perotto, A., & Delagi, E. F. (2005). Anatomical guide for the electromyographer: the limbs and trunk. Springfield, IL: Charles C Thomas Publisher.
Rossato, M., Bini, R., Carpes, F., Diefenthaeler, F., & Moro, A. (2008). Cadence and workload effects on pedaling technique of well-trained cyclists. International Journal of Sports Medicine, 29, 746-752.
Sanderson, D. J., & Amoroso, A. T. (2009). The influence of seat height on the mechanical function of the triceps surae muscles during steady-rate cycling. Journal of Electromyography and Kinesiology, 19(6), e465-e471.
Schwellnus M. P., & Derman, E. W. (2005). Common injuries in cycling: prevention, diagnosis and management: review article. South African Family Practice, 47(7), p. 14, 16, 18-19.
Shennum, P. L. (1976). The effect of saddle height on oxygen consumption during bicycle ergometer work. Medicine & Science in Sports & Exercise, 8(2), 119-121.
Shennum, P. L., & DeVries, H. (1975). The effect of saddle height on oxygen consumption during bicycle ergometer work. Medicine and Science in Sports, 8(2), 119-121.
Shumway-Cook, A., & Woollacott, M. H. (2001). Motor Control: Theory and Practical Applications. Philadelphia, PA: Lippincott Williams & Wilkins.
Silberman, M. R., Webner, D., Collina, S., & Shiple, B. J. (2005). Road bicycle fit. Clinical Journal of Sport Medicine, 15(4), 271-276.
Takaishi, T., Yamamoto, T., Ono, T., Ito, T., & Moritani, T. (1998). Neuromuscular, metabolic, and kinetic adaptations for skilled pedaling performance in cyclists. Medicine & Science in Sports & Exercise, 30(3), 442-449.
Van Ingen Schenau, G., Boots, P., De Groot, G., Snackers, R., & Van Woensel, W. (1992). The constrained control of force and position in multi-joint movements. Neuroscience, 46(1), 197-207.
Wakeling, J., Blake, O., & Chan, H. (2010). Muscle coordination is key to the power output and mechanical efficiency of limb movements. The Journal of Experimental Biology, 213(3), 487-492.
Whitty, A. G., Murphy, A. J., Coutts, A. J., & Watsford, M. L. (2009). Factors associated with the selection of the freely chosen cadence in non-cyclists. European Journal of Applied Physiology, 106(5), 705-712.
Wu, C.-y., Wong, M.-k., Lin, K.-c., & Chen, H.-c. (2001). Effects of task goal and personal preference on seated reaching kinematics after stroke. Stroke, 32(1), 70-76.