簡易檢索 / 詳目顯示

研究生: 盧建勳
Jian-Shiun Lu
論文名稱: 鐵芯式永磁同步伺服線性馬達應用於高精密度定位平台之運動控制與設計
High Precision Motion Control and Design in Position Platform for Linear Permanent-Magnet Iron Core Synchronous Motors
指導教授: 陳美勇
Chen, Mei-Yung
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 131
中文關鍵詞: 高精密度定位控制平台鐵芯式永磁同步伺服線性馬達適應性步階迴歸滑模控制器(ABSMC)變速度控制器(VSC)遞迴式類神經網路補償控制器(RNNC)
英文關鍵詞: high precision positioning control platform, linear permanent-magnet iron core synchronous motor, adaptive back-stepping sliding mode controller(ABSMC), variable speed controller(VSC), recurrent neural network compensative controller(RNNC)
論文種類: 學術論文
相關次數: 點閱:310下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之主要目的為建置一部高精密度定位控制平台,且為了達到次微米等級之精密控制,我們設計了四種控制器作為提升定位平台系統精密度的方法,分別為兩個系統主要控制器與兩個輔助控制器,其中主要控制器包含了PID控制器與適應性步階迴歸滑模控制器(ABSMC),而輔助控制器則有變速度控制器(VSC)與遞迴式類神經網路補償控制器(RNNC)。
    在高精密度定位平台之控制性能中,有兩項控制性能是必備的,即高精密定位控制與高精密動態軌跡追蹤控制的能力。因此我們將比較兩個主控制器PID與ABSMC在上述兩項控制性能上的優劣,最後選定性能優者為本系統之主控制器。
    當高精密度定位平台在執行定位控制的過程中,往往因為較嚴重的暫態超越量,影響定位控制的精密度,所以我們將系統主控制器結合VSC輔助控制器為系統暫態效能做改善。而在執行動態軌跡追蹤控制的過程中,其動態軌跡移動之反曲點通常會有較大的追蹤誤差出現,此也是造成定位平台精密度不足的主因,在此我們將系統主控制器結合RNNC輔助控制器,改善系統動態反曲點之最大誤差量。
    本研究之高精密定位平台控制,主要由鐵芯式永磁同步伺服線性馬達作為驅動系統,其最大行程為200mm,而光學尺之精密度為0.1μm,在系統控制器設計方面,主要是採用LabVIEW 2010 Professional Development System,作為控制器程式設計之軟體與操作介面。

    The main purpose of this study is to build a high precision positioning control platform. In order to achieve high-precision control, we designed four controllers to enhance the precision of the positioning platform to sub-micron level. These controllers can be divided into two categories of main controller and auxiliary controller. The main controllers contain a PID controller and an adaptive back-stepping sliding mode controller (ABSMC). As well as the auxiliary controllers contain a variable speed controller (VSC) and a recurrent neural network compensative controller (RNNC).
    High-precision positioning control and dynamic tracking control are the necessary abilities in high precision positioning control platform. For these reasons, we compared the PID and ABSMC the pros and cons of these two control performance. Then, we selected the excellent one to be the main controller of the system.
    The precision of positioning control is disturbed by serious transient overshoot in the positioning platform system. Therefore, we combined the main controller with the auxiliary controller of VSC to improve the transient performance of the system. However, in the process of dynamical tracking control, the maximum tracking errors usually appear in the dynamic inflection points. Therefore, we combined the main controller with the auxiliary controller of RNNC to improve the performance of dynamic inflection points.
    In this study, we chose the linear permanent-magnet iron core synchronous motors drive system on the positioning platform and the maximum stroke is 200mm. The resolution of the linear scale is 0.1μm. In the controller design, we utilize LabVIEW 2010 Professional Development System to program the system code and develop the human-machine interface.

    摘要 ................................................ i Abstract ........................................... ii 誌謝 ................................................ iv 目錄 ................................................ v 圖目錄 .............................................. viii 表目錄 .............................................. xiv 第一章 緒論 .......................................... 1 1.1 前言 ............................................ 1 1.2 文獻回顧 ........................................ 3 1.3 研究動機與目的 ................................... 11 1.4 本研究之貢獻 ..................................... 12 1.5 論文架構 ........................................ 13 第二章 理論基礎 ..................................... 14 2.1 線性馬達簡介 .................................. 14 2.1.1 線性馬達之種類與變化 ........................... 15 2.1.2 線性馬達與滾珠導螺桿之驅動系統性能比較 ........... 16 2.1.3 線性馬達之座標轉換 ............................. 17 2.2 高階控制器之設計原理解說 ........................ 24 2.2.1 Lyapunov 穩定性理論 ........................... 28 2.2.2 可變結構控制理論 ............................... 30 2.2.3 Lyapunov 控制器設計法 ......................... 31 2.2.4 線性馬達之速度迴路控制 ......................... 34 2.3 線性馬達之干擾模型 ............................. 36 2.3.1 摩擦力之介紹 .................................. 36 2.3.2 漣波效應( Ripple effect ) .................... 42 第三章 實驗設備介紹 ................................. 44 3.1 高精密度定位平台控制系統 ........................ 45 3.2 鐵芯式永磁同步伺服線性馬達 ...................... 46 3.3 線性馬達驅動器 ................................. 48 3.4 光學量測系統之線性編碼器 ........................ 50 3.5 線性滑軌 ....................................... 51 3.6 資料擷取卡 ..................................... 53 第四章 系統動態模型之建立 ............................ 54 4.1 高精密度定位平台控制系統之致動分析 ................ 54 4.2 鐵芯式永磁同步伺服線性馬達之推力模型分析 ........... 56 4.3 高精密度定位平台之系統動態模型 .................... 63 第五章 系統控制器設計 ................................ 64 5.1 主控制設計-PID控制器 .......................... 66 5.1.1 調整PID控制參數-Ziegler-Nichols 演算法 ........ 69 5.1.2 調整PID控制參數-Chien-Hrones-Reswick演算法 .... 72 5.1.3 調整PID控制參數-Cohen-Coon演算法 .............. 73 5.2 主控制器設計-適應性步階回歸滑模控制器(ABSMC).... 74 5.3 輔助控制器設計-變速度控制器(VSC) .............. 81 5.4 輔助控制器設計-遞迴式類神經網路補償控制器(RNNC).. 88 第六章 實驗結果與討論 ................................. 94 6.1 高精密度定位平台之主控制器選定 ................... 95 6.1.1 定位控制-PID與ABSMC之實驗結果 .................. 95 6.1.2 動態軌跡追蹤控制-PID與ABSMC之實驗結果 .......... 102 6.1.3 系統主要控制器 ................................ 104 6.2 主控制器ABSMC之負載強健性能評估與問題分析 ........ 105 6.2.1 定位控制實驗-負載強健性能測試 .................. 105 6.2.2 問題分析:ABSMC定位控制之強健性 ................ 108 6.2.3 動態軌跡追蹤控制實驗-負載強健性能測試 ........... 109 6.2.4 問題分析:ABSMC追跡控制之強健性 ................ 111 6.3 定位控制效能改善-ABSMC結合VSC之實驗結果 ........ 112 6.3.1 總結:定位控制效能改善成果 ..................... 117 6.4 動態軌跡追蹤控制-ABSMC結合RNNC之實驗結果 ....... 118 6.4.1 總結:動態軌跡追蹤控制效能改善成果 .............. 123 第七章 結論與未來展望 ................................ 124 參考文獻 ........................................... 126

    [1] K. K. Tan, T. H. Lee, H. F. Dou, S. J. Chin, and S. Zhao, “Precision Motion Control With Disturbance Observer for Pulse width Modulated Driven Permanent Magnet Linear Motors,” IEEE Transactions on Magnetics, Vol. 39, no. 3, pp. 1818-1818, May 2003.
    [2] R. Cao, and K. S. Low, “A Repetitive Model Predictive Control Approach for Precision Tracking of a Linear Motion System,” IEEE Transactions on Industrial Electronics, Vol. 56, no. 6, pp. 1955-1961, June 2009.
    [3] C. C. Sung, and Y. S. Huang, “Based on Direct Thrust Control for Linear Synchronous Motor Systems,” IEEE Transactions on Industrial Electronics, Vol. 56, no. 5, pp. 1629-1639, May 2009.
    [4] Z. Z. Liu, F. L. Luo, and M. A. Rahman, “Robust and Precision Motion Control System of Linear-Motor Direct Drive for High-Speed X–Y Table Positioning Mechanism,” IEEE Transactions on Industrial Electronics, Vol. 52, no. 5, pp. 1397-1363, October 2005.
    [5] S. L. Chen, K. K. Tan, S. Huang, and C. S. Teo,“Modeling and Compensation of Ripples and Friction in Permanent Magnet Linear Motor Using a Hysteretic Relay,”IEEE/ASME Transactions on Mechatronics, Vol. 15, no. 4, pp. 586-594, August 2010.
    [6] F. J. Lin, K. K. Shyu, and C. H. Lin,“Incremental Motion Control of Linear Synchronous Motor,”IEEE Transactions on Aerospace and Electronic Systems, Vol. 38, no. 3, pp.1011-1022 , July 2002.
    [7] F.J. Lin, and P. H. Shen,“Robust Fuzzy Neural Network Sliding-Mode Control for Two-Axis Motion Control System,”IEEE Transactions on Industrial Electronics, Vol. 53, no. 4, pp.1209-1225, August 2006.
    [8] Z. Jamaludin, H. V. Brussel, and J. Swevers,“Friction Compensation of an XY Feed Table Using Friction-Model-Based Feedforward and an Inverse-Model-Based Disturbance Observer,”IEEE Transactions on Industrial Electronics, Vol. 56, no. 10, pp. 3848-3853, October 2009.
    [9] 王良原,黃勝銘,林偉勝,黃彥賓,“Design and Manufacture of New Type Linear Synchronous Motor for Vertical Transpo,”行政院國家科學委員會專題研究計畫,計畫編號:NSC 94-2212-E239-006, 中華民國94年08月01日至95年07月31日。
    [10] 鍾豐駿,“The Implementation and Design for a Linear Motor Drive Control System,”Feng Chia University, Master thesis, May 2003.
    [11] 張光福,「線性永磁同步馬達之非線性系統識別與強健控制器設計」, 國防大學中正理工學院, 碩士論文, 中華民國九十二年五月。
    [12] 吳信成,“Design and Implementation of the Real-Time Motion Control Systems on An X-Y Table,”National Cheng Kung University, Master thesis, July 2006.
    [13] W. S. Huang, C. W. Liu, P. L. Hsu, and S. S. Yeh,“Precision Control and Compensation of Servomotors and Machine Tools via the Disturbance Observer,”IEEE Transactions on Industrial Electronics, Vol. 57, no. 1, pp. 420-429, January 2010.
    [14] F. Aghili, J. M. Hollerbach, and M. Buehler,“A Modular and High-Precision Motion Control System With an Integrated Motor,” IEEE/ASME Transactions on Mechatronics, Vol. 12, no. 3, pp.317-329 June 2007.
    [15] 許溢适編譯,「交流電動機的向量控制」,文笙書局,1998。
    [16] 劉昌煥編譯,「交流電機控制向量控制與直接轉矩控制原理」,東華書局2003。
    [17] 陳義明,“Analysis and Design of Permanent Magnet Linear Synchronous Motor Driver Systems Using FPGA,”Da Yeh University, Master thesis, June 2005.
    [18] 趙清風編譯,「控制工程初階使用MATLAB Simulink」,全華科技圖書股份有限公司,民國90年12月。
    [19] 俞克維編著,「控制系統分析與設計使用MATLAB」,新文京開發出版有限公司,民國92年1月。
    [20] 林安編著,「控制系統Control systems」,超級科技圖書股份有限公司,民國94年9月。
    [21] 林俊良編著,「控制系統數學」,全華科技圖書股份有限公司,民國88年10月。
    [22] 陳永平、張浚林編著,「可變結構控制設計」,全華科技圖書股份有限公司,民國91年9月。
    [23] 曾仲熙編著,「控制器設計與模擬範例」,東華書局,民國99年8月。
    [24] HIWIN上銀科技「線性馬達系統-技術手冊」
    [25] S. Futami, A. Furutani and S. Yoshida, “Nanometer 135 positioning and its micro-dynamics,” Nanotechnology, Vol. 1, pp.31-37, 1990.
    [26] B. Armstrong, P. Dupont, and C. C. de Wit, “A Survey of Models Analysis Tools and Compensation Methods for the Control of 114 Machines with Friction,” Automatic, Vol. 30, No. 7, pp. 1083-1138, 1994.
    [27] 許耀中,“Disturbance Observer and Adaptive Controller Design for a Linear-Motor-Driven Table System,”Hua Fan University, Master thesis, July 2006.
    [28] 陳旺樟,“Intelligent Controller Design for a Linear-Motor-Driven Table System,”Hua Fan University, Master thesis, July 2007.
    [29] C. Röhrig,“Force Ripple Compensation of Linear Synchronous Motors,” Asian Journal of Control, Vol. 7, No.1, pp. 1-11, March 2005.
    [30] J. Wu, Z. Xiong, K. M. Lee, and H. Ding,“High-Acceleration Precision Point-to-Point Motion Control With Look-Ahead Properties”IEEE Transactions on Industrial Electronics, Vol. 58, no. 9, pp.4343-4352, September 2011.
    [31] Y. Zhang, L. S. Shieh, and A. C. Dunn,“PID controller design for disturbed multivariable systems,”IEE Proc.-Control Theory Appl., Vol. 151, No. 5, pp.567-576, September 2004.
    [32] Katsuhiko Ogata,“Discrete-Time Control Systems,”Prentice-Hall, Inc. 2006.
    [33] F. Cupertino, D. Naso, E. Mininno, and B. Turchiano,“Sliding-Mode Control With Double Boundary Layer for Robust Compensation of Payload Mass and Friction in Linear Motors,”IEEE Transactions on Industry Applications, Vol. 45, no. 5, pp.1688-1696, September/October 2009.
    [34] 張育暢,“Design and Implementation of Cmac-based Controller for Permanent Magnet Linear Synchronous Motor Drive,”Tatung University, Master thesis, July 2003.
    [35] P. Famouri,“Control of a Linear Permanent Magnet Brushless Dc Motor Via Exact Linearization Methods,”IEEE Transactions on Encrgy Conversion, Vol. 7, No. 3, pp.544-551, September 1992
    [36] 陳銘輝,“Implementation of Position Control of a Linear Brushless DC Motor Drive System,”National Taiwan University of Science and Technology, Master thesis, June 2006.
    [37] F. J. Lin, P. H. Shen and S. P. Hsu,“Adaptive backstepping sliding mode control for linear induction motor drive,”IEE Proc. Electr. Power Appl., Vol. 149, no. 3, pp.184-194, May 2002,
    [38] 徐書鵬,“Linear Induction Motor Drive System Based on Backstepping Controller,”Chung Yuan Christian University, Master thesis, June 2001.
    [39] K. K. Shyu,and C. K. Lai,“Incremental Motion Control of Synchronous Reluctance Motor Via Multisegment Sliding Modex Control Method,” IEEE Transactions on Control Systems Technology, Vol. 10, no. 2, pp.169-176, March 2002.
    [40] P. H. Shen and F. J. Lin,“Intelligent backstepping sliding-mode control using RBFN for two-axis motion control system,”IEE Proc. Electr. Power Appl., Vol. 152, no. 5, pp.1322-1342, September 2005.
    [41] K. K. Tan, and K. Z. Tang,“Adaptive Online Correction and Interpolation of Quadrature Encoder Signals Using Radial Basis Functions,”IEEE Transactions on Control Systems Technology, Vol. 13, no. 3, pp.370-377, May 2005.
    [42] F. J. Lin, P. H. Chou, C. S. Chen, and Y. S. Lin,“DSP-Based Cross-Coupled Synchronous Control for Dual Linear Motors via Intelligent Complementary Sliding Mode Control,”IEEE Transactions on Industrial Electronics, Vol. 59, no. 2, pp.1061-1073, February 2012.

    下載圖示
    QR CODE