研究生: |
沈正都 Cheng-Tu Shen |
---|---|
論文名稱: |
應力模擬應用於微晶矽與氧化物半導體電晶體及其電性分析 Stress Simulation and Electrical Characteristics of the Micro Crystal Si and Oxide Semiconductor TFTs |
指導教授: |
李敏鴻
Lee, Min-Hung |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 114 |
中文關鍵詞: | 應力模擬 、微晶矽 、氧化物半導體 、電晶體 、電性分析 |
英文關鍵詞: | Stress Simulation, Micro Crystal Si, Oxide Semiconductor, TFT, Electrical Characteristics |
論文種類: | 學術論文 |
相關次數: | 點閱:388 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著時間改變,科技也日新月異,光電產業更是如此。近年來光電產業技術蓬勃發展,但也同時代表著激烈的產業競爭,因此必須考慮到支出成本的降低,才能在供給與需求中求得獲利。在開發新設計之前,利用CAE模擬更可以減少設計成本以及縮短開發時間,所以如何設計出一個準確的CAE模擬模型是相當重要的一環。近年來攜帶式電子產品成為市場的主流,諸如Tablet PC、PDA 、Mobile Phone 等廣泛的使用到顯示面板,在輕薄的訴求下,紛紛朝向次世代顯示器發展,其中以塑膠基板為主的可撓曲面板更是大家所共同努力的方向。
針對可撓曲面板中薄膜電晶體的應力模擬與分析是本篇論文的重點。論文將改良與重建本研究團隊之前所建模擬薄膜電晶體模型。從單純垂直轉角至階梯型轉角以及二維發展至三維,並加入材料內應力;以及量測與工研院合作之薄膜電晶體電性。最後分析CAE模擬模型與實際元件量測結果。
Along with the time, the science and technology change each new day, and the electro-optical industry is so, especially. In recent years, the electro-optical industry’s technology is vigorous development, but it is also representing that intense industrial competition.
So, it must consider the reduction of outlay cost, in order to obtain the profit. Therefore, how to design an accurate CAE Model is a quite critical point. Recently, the portable electronic products became the mainstream in market, such as Tablet PC, PDA, and mobile phone and so on.
Because of the demand of lightweight and rugged, flexible display will play an important role in next generation display development. The simulation and analysis of thin film transistor’s reliability is key point of this paper.
We improve and remake former thin film transistor model from the perpendicular corner to the “ladder” corner as well as the 2D to 3D, and analysis the electrical characteristic of thin film transistor form ITRI.
文獻參考
[1] F. Kurylo, C. Susskind, “Ferdinand Braun: A Life of the Nobel Prizewinner and Inventor of the Cathode-Ray Oscilloscope,” The MIT Press, 1981, ch. 1
[2] R. H. Chen, “Liquid Crystal Displays: Fundamental Physics and Technology,” Wiley, 2011, ch. 1
[3] 田民波, “TFT 液晶顯示原理與技術,” 五南出版, Ch.1
[4] K. McGoldrik, “Mobile Freedom,” USDC 5th Flexible Displays & Microelectronics Conference & Exhibits, 2006, Phoenix, Az
[5] B. A. MacDonald, K. Rollins, D. MacKerron, K. Rakos, R. Eveson, K. Hashimoto, and B. Rustin, “Engineered Films for Display Technologies, ” from Flexible Flat Panel Displays, John Wiley & Sons, Ltd., 2005, Chichester, G. P. Crawford, Editor, Chapter 2.
[6] C. C. Lee, Y. Y. Chang, H. C. Cheng, J. C. Ho and J. L. Chen, ”A Novel Approach to Make Flexible Active Matrix Displays,” Society for Information Display, pp.810-813, 2010.
[7] G. R. Liu, S. S. Quek,” The Finite Element Method:
A Practical Course,” Butterworth-Heinemann, pp.1-3, 2003.
[8] M. H. Lee, K. Y. Ho, P. C. Chen, C. C. Cheng, S. T. Chang, M. Tang, M. H. Liao, and T.H. Yeh, “Promising a-Si:H TFTs with High Mechanical Reliability for Flexible Display,” IEDM Digest of Technical Digest, pp. 299-302, 2006.
[9] G. P. Crawford, “flexible flat panel displays,” ch. 9, pp. 165.
[10] ANSYS User’s Manual, Swanson Analysis System, Inc., 2005.
[11] 黃立政, “材料力學,” 全華科技圖書股份有限公司
[12] E. Kobeda, E. A. Irene, “Intrinsic SiO2 film stress measurements on thermally oxidized Si,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures , Vol. 5, No. 1 , pp. 15-19 ,1987.
[13] H. Oettel, R. Wiedemann, and S. Preibler, “Residual stress in nitride hard coatings prepared by magnetron sputtering and arc evaporation”, Surf. Coat. Technol., Vol.6, pp.273-278, 1995.
[14] O. Knotek, R. Elsing, and F. Jungblut, “On the origin of compressive stress in PVD coatings - an explicative model,” Surf. Coat. Technol., Vol.46, pp.265-274, 1991.
[15] M. Madou, “Fundamentals of microfabrication: The science of miniaturization”, Boca Raton, FL:CRC Press, 2002.
[16] C. Y. Liu, ”Stress Distribution and Model Design of the Devices on Flexible and Rigid Substrate”, Institute of Electro-Optical Science and Technology, National Taiwan Normal University
[17] D. L. Staebler and C. R. Wronski, “Optically Induced Conductivity Changes in Discharge-Produced Hydrogenated Amorphous-Silicon,” Journal of Applied Physics, 51 (1980) 3262.
[18] C.W. Tai, ”Mechanical Stress Analysis of Amorphous and Microcrystalline Silicon in Solar Cells and Thin Film Transistors Applications,” Institute of Electro-Optical Science and Technology, National Taiwan Normal University
[19] http://www.matweb.com, 07/08/2012.
[20] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors”, Nature,432, 488-492, 2004.
[21] B. J. Kim, K. Y. Park, J. H. Ahn, and Y. J. Kim “Temperature Dependence of Threshold Voltage in Thin-Film SO1 MOSFET’s,” IEEE Electron Device Letters, pp.329-331, Vol. 11, No. 8, 1990.
[22] N. Singh, F. Y. Lim, W. W. Fang, S. C. Rustagi, L. K. Bera, A. Agarwal, C. H. Tung, K. M. Hoe, S. R. Omampuliyur, D. Tripathi, A. O. Adeyeye, G. Q. Lo, N. Balasubramanian, and D. L. Kwong, "Ultra-Narrow Silicon Nanowire Gate-All-Around CMOS Devices: Impact of Diameter, Channel-Orientation and Low Temperature on Device Performance," IEEE Electron Devices Meeting, pp. 1-4, 2006.
[23] H. Fujiwara, M. Kondo and A. Matsuda, “Stress-Induced Nucleation of Microcrystalline Silicon from Amorphous Phase,” J. Appl. Phys., Vol. 41, no. 5A, pp. 2821–2828, 2002.
[24] B. J. Kim, K. Y. Park, J. H. Ahn, and Y. J. Kim “Numerical Design of SiO2 Bridges in Stretchable Thin Film Transistors,” J.J.Appl. Phys., Vol. 51,2012.
[25] C.W. Ong, D.G. Zong, M. Aravind, and C.L. Choy, D.R. Lu “Tensile strength of zinc oxide films measured by a microbridge method,” J. Material Research, Vol. 18, pp. 2464–2472, 2003.