簡易檢索 / 詳目顯示

研究生: 黃郁筑
Huang, Yu-Chu
論文名稱: 消渴草減輕小鼠FL83B肝臟細胞株胰島素阻抗及脂肪累積之研究
Alleviative effect of Ruellia tuberosa L. on insulin resistance and lipid accumulation in FL83B mouse hepatocytes
指導教授: 沈賜川
Shen, Szu-Chuan
學位類別: 碩士
Master
系所名稱: 人類發展與家庭學系
Department of Human Development and Family Studies
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 83
中文關鍵詞: 消渴草胰島素阻抗第二型糖尿病非酒精性脂肪肝
英文關鍵詞: Ruellia tuberosa L, insulin resistance, diabetes, non-alcohol fatty liver disease
DOI URL: https://doi.org/10.6345/NTNU202203922
論文種類: 學術論文
相關次數: 點閱:218下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

第二型糖尿病( Type 2 diabetes mellitus )為一種代謝性慢性疾病,主要病徵為胰島素分泌不足或細胞發生胰島素阻抗,造成高血糖的現象,流行病學調查亦發現約有70-95 %第二型糖尿病患者會同時合併非酒精性脂肪肝(Non-alcohol fatty liver disease)之發生,顯示兩種疾病之間有高度相關性。消渴草(Ruellia tuberosa Linn.)是台灣傳統中草藥,許多研究證實有降血糖、抗發炎、抗氧化和抗糖尿病等功效,但目前對其活性成分之研究尚未有深入的了解。本研究探討消渴草區分物減輕小鼠FL83B肝臟細胞株胰島素阻抗及脂肪累積之效果。首先以腫瘤壞死因子(TNF-α)刺激小鼠FL83B肝臟細胞株形成胰島素阻抗之細胞模式,並以油酸(oleic acid)誘導成合併非酒精性脂肪肝之細胞模式,再以消渴草區分物處理上述細胞,之後以標記螢光的葡萄糖分子2-NBDG來評估細胞對於葡萄糖攝入之能力,其次利用油紅染劑(Oil red O)觀察細胞脂肪累積含量,並分析細胞脂肪合成相關訊息傳遞路徑蛋白的表現量。實驗結果顯示,消渴草之乙酸乙酯(Ethyl acetate)區分物顯著增加具有胰島素阻抗之小鼠肝臟細胞的葡萄糖攝入能力,並降低小鼠肝臟細胞內的脂肪累積含量。western blot結果顯示消渴草之乙酸乙酯區分物可以透過提升小鼠FL83B肝臟細胞內胰島素訊息傳遞路徑蛋白,如胰島素受器(Insulin receptor)、phosphatidylinositol-3-kinase (PI3K)、protein kinase B (Akt/PKB)和葡萄糖轉運蛋白2 (Glucose transporter 2)的表現來增加細胞對葡糖的攝入;另外,消渴草乙酸乙酯區分物可透過增加PPARα而調控基因表現促進細胞脂肪代謝、減少脂肪肝細胞的脂肪累積含量。以上結果顯示,消渴草乙酸乙酯區分物可有效改善胰島素阻抗小鼠肝臟細胞的葡萄糖攝取並增加PPARα的表現來減少小鼠肝臟細胞脂肪之堆積。

Type 2 diabetes mellitus (T2DM) is a metabolic disease commonly associate with obesity. Nonalcoholic fatty liver disease (NAFLD) is a disease being at excessive lipid accumulated in the liver, and is highly prevalent among patients with T2DM. Ruellia tuberosa L. (RTL) has been traditionally used to treat DM as a fork medicine in Asia. The present study investigated the effect of RTL on glucose uptake, insulin resistance and lipid accumulation in vitro to mimic the T2DM accompanied with NAFLD in vivo. Mouse hepatocyte FL83B was treated with tumor necrosis factor α (TNFα) to induce insulin resistance, co-incubated with oleic acid to induce lipid accumulation, and then treated with RTL fractions from column chromatography. The uptake of fluorescent 2-NBDG was used to assess the hypoglycemic potential of RTL. The lipid droplet was observed by Oil Red O stain microscopy to evaluate the accumulation of lipid in cells. Western bolt analysis was used to evaluate the insulin signaling and lipid synthesis pathway in mouse hepatocyte FL83B. The results show that ethyl acetate fraction (EAF) from RTL significantly increased glucose uptake and suppressed lipid droplet accumulation in TNFα plus OA-treated FL83B cells. Western blot analysis shows EAF from RTL ameliorates insulin resistance by up-regulating the expression of the insulin signaling-related proteins such as insulin receptor (IR), phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt/PKB), glucose transporter-2 (GLUT-2) and peroxisome proliferator-activated receptor alpha (PPARα) in TNFα plus OA-treated cells . The above observations suggest that RTL may improve hepatic glucose uptake and lipid accumulation via ameliorating hepatic insulin signaling and suppressing hepatic lipogenesis pathway in TNF-α plus OA treated mouse hepatocyte.

中文摘要 ii Abstract iii 目錄 iv 圖次 vii 第一章 前言 1 第二章 文獻回顧 2 第一節 糖尿病 2 一、 糖尿病流行病學 2 二、 糖尿病簡介 3 三、 糖尿病分類 4 四、 糖尿病診斷方法 6 第二節 胰島素 7 一、 胰島素簡介 7 二、 胰島素功能 8 三、 胰島素之訊息傳遞系統 9 四、 胰島素阻抗作用 9 第三節 非酒精性脂肪肝 11 一、 簡介 11 二、 肝臟脂肪堆積機制 13 三、 NAFLD與胰島素阻抗之探討 18 第四節 消渴草 21 一、 消渴草簡介 21 二、 消渴草活性之文獻回顧 21 第三章 研究動機與實驗架構 24 第一節 研究動機 24 第二節 實驗架構 25 第四章 實驗材料與方法 26 第一節 消渴草降血糖成分分離實驗方法與步驟 26 一、 實驗材料 26 二、 實驗設備 27 三、 實驗方法與步驟 27 第二節 細胞實驗之材料方法 30 一、 實驗材料 30 二、 實驗儀器設備 32 三、 實驗方法與步驟 33 第五章 實驗結果 43 第一節 消渴草萃取物分離純化與細胞毒性測定 43 第二節 消渴草區分物對胰島素阻抗細胞攝入能力之影響 45 一、 2-NBDG染劑攝入濃度效應 45 二、 FL83B細胞對TNFα誘導胰島素阻抗之評估 45 三、 Three layer partition extracts from RTL. 45 四、 Fractions from RTL extract. 46 第三節 油酸誘導脂肪累積細胞模式 47 第四節 消渴草區分物改善胰島素阻抗合併脂肪累積細胞狀態之影響 48 第六章 討論 65 第一節 消渴草萃取物對FL83B細胞株細胞毒性之影響 65 第二節 消渴草萃取物對胰島素阻抗細胞攝入能力之影響 66 第三節 油酸及TNFα誘導胰島素阻抗合併脂肪肝之細胞模式 68 第四節 消渴草區分物改善胰島素阻抗合併脂肪肝細胞胰島素阻抗及脂肪累積 70 一、 胰島素受器(insulin receptor, IR)表現 70 二、 磷酸肌醇激酶表現 70 三、 Akt/PKB蛋白磷酸化表現 71 四、 葡萄糖轉運蛋白表現 71 五、 PPARα表現 72 第七章 總結 74 第八章 參考文獻 75

台灣糖尿病協會. 2015. http://homepage.vghtpe.gov.tw/~meta/hospital/about-1.htm
台灣糖尿病年鑑2000-2009. Journal of the Formosan Medical Association (2012) 111(11), 587-664
周哲良. 2012. 非洲白蔘與消渴草之成分於促進葡萄糖攝入及黃嘌呤氧化酶抑制作用之評估. 碩士論文, 台北醫學大學生藥學研究所.
洪心容. 2008. 台灣產九種治療糖尿病藥用植物之抗氧化及降血糖相關性之研究. 碩士論文, 中國醫藥大學藥學研究所.
財團法人台灣肝臟學術文教基金會. 2015. http://liver.club.kmu.edu.tw/publish.php?Board_No=47
陳柔安. 2015. 消渴草粗萃物對高脂飲食及STZ誘發高血糖大鼠胰島素阻抗及肝臟解毒功能之影響. 碩士論文, 國立台灣師範大學人類發展與家庭學系研究所.
張瑀芳. 2015. 消渴草減輕高脂飼料及Streptozotocin誘導第二型糖尿病大鼠主動脈損傷之研究. 碩士論文, 國立台灣師範大學人類發展與家庭學系研究所.
張文昌. 2010. 食用桃金釀科植物萃取物減輕小鼠肝臟細胞FL83B胰島素阻抗之探討. 碩士論文, 國立台灣大學食品科技研究所.
張巧俐. 2011. 粉紅種蓮霧幼果水萃物減輕以腫瘤壞死因子 (TNFα) 處理之小鼠肝臟細胞(FL83B)胰島素阻抗及改善醣類代謝之研究. 碩士論文, 國立台灣大學食品科技研究所.
衛生福利部統計處. 2014.
http://www.mohw.gov.tw/news/531349778
American Diabetes Association.
http://www.diabetes.org/
American Liver Foundation.
http://www.liverfoundation.org/abouttheliver/info/nafld/
Ananthakrishnan, M., Doss, V. K. (2013). Effect of 50% Hydro-Ethanolic Leaf Extracts of Ruellia Tuberosa L. and Dipteracanthus Patulus (Jacq.) on Lipid Profile in Alloxan Induced Diabetic Rats. International Journal of Preventive Medicine., 4, 744-747.
Bhatt, H. B., & Smith, R. J. (2015). Fatty liver disease in diabetes mellitus. hepatobiliary Surgery and Nutrition, 4(2), 101-108. doi:10.3978/j.issn.2304-3881.2015.01.03
Brand, J. M., Djouad, F. K., Daniel, P. (1998). Fatty Acids Activate Transcription of the Muscle Carnitine Palmitoyltransferase I Gene in Cardiac Myocytes via the Peroxisome Proliferator-activated Receptor alpha. The Journal of Biological Chemistry, 273,(11), 23786–23792.
Birkenfeld, A. L., & Shulman, G. I. (2014). Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology, 59(2), 713-723. doi:10.1002/hep.26672
Bj ȍrnholm, M., Zierath, J.R. (2005). Insulin signal transduction in human skeletal muscle: identifying the defects in Type II diabetes. Biochemical Society Transactions, 33(2), 354-357. dio:10.1042/BST0330354
Chang, J. J., Hsu, M. J., Huang, H. P., Chung, D. J., Chang, Y. C., & Wang, C. J. (2013). Mulberry anthocyanins inhibit oleic acid induced lipid accumulation by reduction of lipogenesis and promotion of hepatic lipid clearance. Journal of Agricultural and Food Chemistry, 61(25), 6069-6076. doi:10.1021/jf401171k
Chen, F. A., Wu, A. B., Shieh, Pochuen, Kuo, D. ,Huang, & Hsieh, C. Y. (2006). Evaluation of the antioxidant activity of Ruellia tuberosa. Food Chemistry, 94(1), 14-18. doi:10.1016/j.foodchem.2004.09.046
Chen, Y., Qing, W., Sun, M., Lv, L., Guo, D., Jiang, Yi. (2015). Melatonin protects hepatocytes against bile acid-induced mitochondrial oxidative stress via the AMPK-SIRT3-SOD2 pathway. Free Radical Research, 49(10), 1275-1284. doi: 10.3109/10715762.2015.1067806.
Cui, W., Stephen, Chen, L., Hu, K. Q. (2010). Quantification and mechanisms of oleic acid-induced steatosis in HepG2 cells. American Journal of Translational Research, 1(2), 95-104.
Eberle, D., Hegarty, B., Bossard, P., Ferre, P., & Foufelle, F. (2004). SREBP transcription factors: master regulators of lipid homeostasis. Biochimie, 86(11), 839-848. doi:10.1016/j.biochi.2004.09.018
Eslamparast, T., Eghtesad, S., Poustchi, H., & Hekmatdoost, A. (2015). Recent advances in dietary supplementation, in treating non-alcoholic fatty liver disease. World Journal of Hepatology, 7(2), 204-212. doi:10.4254/wjh.v7.i2.204
Ewart, M. A., & Kennedy, S. (2011). AMPK and vasculoprotection. Pharmacology & Therapeutics, 131(2), 242-253. doi:10.1016/j.pharmthera.2010.11.002
Fogarty, S., & Hardie, D. G. (2010). Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer. Biochimica et Biophysica Acta, 1804(3), 581-591. doi:10.1016/j.bbapap.2009.09.012
Gaggini, M., Morelli, M., Buzzigoli, E., DeFronzo, R. A., Bugianesi, E., & Gastaldelli, A. (2013). Non-alcoholic fatty liver disease (NAFLD) and its connection with insulin resistance, dyslipidemia, atherosclerosis and coronary heart disease. Nutrients, 5(5), 1544-1560. doi:10.3390/nu5051544
Gupta, S., Bi, R., Kim, C., Chiplunkar, S., Yel, L., & Gollapudi, S. (2005). Role of NF-kappaB signaling pathway in increased tumor necrosis factor-alpha-induced apoptosis of lymphocytes in aged humans. Cell Death & Differentiation, 12(2), 177-183. doi:10.1038/sj.cdd.4401557
Huang C., M., Shiu S., T., Wu M., L., Chen W., G., Wang S., & M., Lee H. (2013). Monacolin K affects lipid metabolism through SIRT1/AMPK pathway in HepG2 cells. Archives of Pharmacal Research, 36(12), 1541-1551. doi:10.1007/s12272-013-0150-2
Huang, Y., Huang, X., Ding, L., Wang, P., Peng, K., Chen, Y., Wang, W. (2015). Serum Fetuin-A Associated With Fatty Liver Index, Early Indicator of Nonalcoholic Fatty Liver Disease: A Strobe-Compliant Article. Medicine (Baltimore), 94(39), e1517. doi:10.1097/MD.0000000000001517
Hwang, Y. J., Wi, H. R., Kim, H. R., Park, K. W., & Hwang, K. A. (2014). Pinus densiflora Sieb. et Zucc. alleviates lipogenesis and oxidative stress during oleic acid-induced steatosis in HepG2 cells. Nutrients, 6(7), 2956-2972. doi:10.3390/nu6072956
Hwang, Y. P., Choi, J. H., Kim, H. G., Khanal, T., Song, G. Y., Nam, M. S., Jeong, H. G. (2013). Saponins, especially platycodin D, from Platycodon grandiflorum modulate hepatic lipogenesis in high-fat diet-fed rats and high glucose-exposed HepG2 cells. Toxicology and Applied Pharmacology, 267(2), 174-183. doi:10.1016/j.taap.2013.01.001
Hwang, Y. P., Choi, J. H., Kim, H. G., Lee, H. S., Chung, Y. C., & Jeong, H. G. (2013). Saponins from Platycodon grandiflorum inhibit hepatic lipogenesis through induction of SIRT1 and activation of AMP-activated protein kinase in high-glucose-induced HepG2 cells. Food Chemistry, 140(1-2), 115-123. doi:10.1016/j.foodchem.2013.02.041
Hwang, Y. P., Kim, H. G., Choi, J. H., Do, M. T., Chung, Y. C., Jeong, T. C., & Jeong, H. G. (2013). S-allyl cysteine attenuates free fatty acid-induced lipogenesis in human HepG2 cells through activation of the AMP-activated protein kinase-dependent pathway. The Journal of Nutritional Biochemistry, 24(8), 1469-1478. doi:10.1016/j.jnutbio.2012.12.006
Jeong, S., Yoon, M. (2009). Fenofibrate inhibits adipocyte hypertrophy and insulin resistance by activating adipose PPARα in high fat diet-induced obese mice. Experimental & Molecular Medicine, 41, 397-405, doi :10.3858/emm. 2009.41.6.045
Kaur, J. (2014). A comprehensive review on metabolic syndrome. Cardiology Research and Practice, 2014: 943162. doi:10.1155/2014/943162
Kelder, T., Verschuren, L. , Ommen, B., Gool, A., J., & Radonjic, M. (2014). Network signatures link hepatic effects of anti-diabetic interventions with systemic disease parameters. BMC Systems Biology, 108(8), dio: 10.1186/s12918-014-0108-0
Kim, J. H., Kang, S. I., Shin, H. S., Yoon, S. A., Kang, S. W., Ko, H. C., & Kim, S. J. (2013). Sasa quelpaertensis and p-coumaric acid attenuate oleic acid-induced lipid accumulation in HepG2 cells. Bioscience, Biotechnology, and Biochemistry, 77(7), 1595-1598. doi:10.1271/bbb.130167
Kim, M., Shen, M., Ngoy, S., Karamanlidis, G., Liao, R., & Tian, R. (2012). AMPK isoform expression in the normal and failing hearts. Journal of Molecular and Cellular Cardiology, 52(5), 1066-1073. doi:10.1016/j.yjmcc.2012.01.016
Kim, M., & Tian, R. (2011). Targeting AMPK for cardiac protection: opportunities and challenges. Journal of Molecular and Cellular Cardiology, 51(4), 548-553. doi:10.1016/j.yjmcc.2010.12.004
Kang, O.H., Kim, S.B., Lee, Y.M., Kang, D.G., Seo, Y. S., Joung, D.K., Mun, S. H., Lee, H.S., & Kwon, D.Y. (2013). Curcumin decreases oleic acid-induced lipid accumulation via AMPK phosphorylation in hepatocarcinoma cells. European Review for Medical and Pharmacological Sciences, 17, 2578-2586.
Kuo, Y. T., Lin, T. H., Chen, W. L., & Lee, H. M. (2012). Alpha-lipoic acid induces adipose triglyceride lipase expression and decreases intracellular lipid accumulation in HepG2 cells. European Journal of Pharmacology, 692(1-3), 10-18. doi:10.1016/j.ejphar.2012.07.028
Lin,C.F., Huang,Y. L., Sheu, S.J., Cheng,L.Y., Chen, C. C. (2006). Bioactive Flavonoids from Ruellia Tuberosa. The Journal of Chinese Medicine & Traditional Chinese Medicine, 86(3), 103-109.
Leturque, A., Brot-Laroche, E., & Le Gall, M. (2009). GLUT2 mutations, translocation, and receptor function in diet sugar managing. The American Journal of Physiology: Endocrinology and Metabolism, 296(5), E985-992. doi:10.1152/ajpendo.00004.2009
Li, C., & Keaney, J. F., Jr. (2010). AMP-activated protein kinase: a stress-responsive kinase with implications for cardiovascular disease. Current Opinion in Pharmacology, 10(2), 111-115. doi:10.1016/j.coph.2009.11.009
Li, H., Min, Q., Ouyang, C., Lee, J., He, C., Zou, M. H., & Xie, Z. (2014). AMPK activation prevents excess nutrient-induced hepatic lipid accumulation by inhibiting mTORC1 signaling and endoplasmic reticulum stress response. Biochimica et Biophysica Acta, 1842(9), 1844-1854. doi:10.1016/j.bbadis.2014.07.002
Manikandan, A. D., Doss, V. K. (2010). Effect of 50% Hydroethanolic Leaf Extracts of Ruellia tuberosa L. and Dipteracanthus patulus (Jacq.) on Non-enzymic Antioxidants and other Biochemical Parameters in Liver, Kidney, Serum of Alloxan Induced Diabetic Swiss Albino Rats. Journal of Biomedical Science and Research, 2(3), 190-210.
Neuschwander-Tetri, B. A. (2010). Nontriglyceride hepatic lipotoxicity: the new paradigm for the pathogenesis of NASH. Current Gastroenterology Reports, 12(1), 49-56. doi:10.1007/s11894-009-0083-6
Noureddin, M., Mato, J. M., & Lu, S. C. (2015). Nonalcoholic fatty liver disease: update on pathogenesis, diagnosis, treatment and the role of S-adenosylmethionine. Experimental Biology Medicine, 240(6), 809-820. doi:10.1177/1535370215579161
Pal, D., Dasgupta, S., Kundu, R., Maitra, S., Das, G., Mukhopadhyay, S., Bhattacharya, S. (2012). Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nature Medicine, 18(8), 1279-1285. doi:10.1038/nm.2851
Phakeovilay, C., Disadee, W., Sahakitpichan, P., Sitthimonchai, S., Kittakoop, P., Ruchirawat, S., & Kanchanapoom, T. (2013). Phenylethanoid and flavone glycosides from Ruellia tuberosa L. Journal of Natural Medicines, 67(1), 228-233. doi:10.1007/s11418-012-0658-7
Polyzos, S. A., Kountouras, J., & Mantzoros, C. S. (2015). Adipokines in nonalcoholic fatty liver disease. Metabolism. 65(8), 1062-1079. doi:10.1016/j.metabol.
Qi, D., & Young, L. H. (2015). AMPK: energy sensor and survival mechanism in the ischemic heart. Trends in Endocrinology & Metabolism, 26(8), 422-429. doi:10.1016/j.tem.2015.05.010
Quan, H. Y., Kim D, Y., Kim, S. J., Jo, H. K., Kim, G. W., Chung, S. H. (2013). Betulinic acid alleviates non-alcoholic fatty liver by inhibiting SREBP1 activity via the AMPK-mTOR-SREBP signaling pathway. Biochemical Pharmacology, 85(9), 1330-1340. doi:10.1016/j.bcp.2013.02.007
Rajan, M., Kishor, V., Kumar, P., Kumar, S., Swathi, K.R., Sangam, H. (2012, ). Antidiabetic, antihyperlipidaemic and hepatoprotective activity of methanolic extract of Ruellia tuberosa Linn leaves in normal and alloxan induced diabetic rats. Journal of Chemical and Pharmaceutical Research, 4(6), 2860-2868.
Rieckmann, P., Tuscano, J. M., & Kehrl, J. H. (1997). Tumor Necrosis Factor-a (TNF-a) and Interleukin-6 (IL-6) in B-Lymphocyte Function. Methods: A Companion to Methods in Enzymology, 11, 128-132
Shahwara, D., Ullaha, S., Ahmadb, M., Ullaha, S., Ahmada, N., Khan, Akmal, M. (2011). Hypoglycemic Activity of Ruellia tuberosa Linn (Acanthaceae) in Normal and Alloxan-Induced Diabetic Rabbits. Iranian Journal of Pharmaceutical Sciences., 2(7), 107-115.
Sharma, M., Mitnala, S., Vishnubhotla, R. K., Mukherjee, R., Reddy, D. N., & Rao, P. N. (2015). The Riddle of Nonalcoholic Fatty Liver Disease: Progression From Nonalcoholic Fatty Liver to Nonalcoholic Steatohepatitis. Journal of Clinical Experimantal Hepatology, 5(2), 147-158. doi:10.1016/j.jceh.2015.02.002
Stefan, N., Fritsche, A., Weikert, C., Boeing, H., Joost, H. G., Haring, H. U., & Schulze, M. B. (2008). Plasma fetuin-A levels and the risk of type 2 diabetes. Diabetes, 57(10), 2762-2767. doi:10.2337/db08-0538
Takano, A. P., Diniz, G. P., & Barreto-Chaves, M. L. (2013). AMPK signaling pathway is rapidly activated by T3 and regulates the cardiomyocyte growth. Molecular and Cellular Endocrinology, 376(1-2), 43-50. doi:10.1016/j.mce.2013.05.024
Um, S. H., D'Alessio, D., & Thomas, G. (2006). Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metabolism, 3(6), 393-402. doi:10.1016/j.cmet.2006.05.003
Vergès, B. & Cariou, B. (2015). mTOR inhibitors and diabetes. Diabetes Research and Clinical Practice, 110(2), 101-108. doi:10.1016/j.diabres.2015.09.014
Vidyashankar, S., Sandeep Varma, R., & Patki, P. S. (2013). Quercetin ameliorate insulin resistance and up-regulates cellular antioxidants during oleic acid induced hepatic steatosis in HepG2 cells. Toxicology In Vitro, 27(2), 945-953. doi:10.1016/j.tiv.2013.01.014
World Health Organization. 2015
http://www.who.int/diabetes/en/
Wulan, D. R., Utomo, E. P., Mahdi, C. (2014). Molecular modeling of Ruellia tuberosa L compounds as a-amylase inhibitor: an in silico comparation between human and rat enzyme model. Bioinformation, 10(4), 209-215.
Weiss, M., Aiad, S., Ayme-Dietrich, D., Dali-Youcef, E., Bousquet, N., Greney, P., Niederhoffer, H. (2015). Imidazoline-like drugs improve insulin sensitivity through peripheral stimulation of adiponectin and AMPK pathways in a rat model of glucose intolerance. American Journal of Physiology - Endocrinology and Metabolism, 309(2), E95-104. doi:10.1152/ajpendo.00021.2015
Wu, H. T., Chen, W., Cheng, K. C., Ku, P. M., Yeh, C. H., & Cheng, J. T. (2012). Oleic acid activates peroxisome proliferator-activated receptor delta to compensate insulin resistance in steatotic cells. The Journal of Nutrition Biochemistry, 23(10), 1264-1270. doi:10.1016/j.jnutbio.2011.07.006
Zhang, D. D., Zhang, J. G., Wang, Y. Z., Liu, Y., Liu, G. L., & Li, X. Y. (2015). Per-Arnt-Sim Kinase (PASK): An Emerging Regulator of Mammalian Glucose and Lipid Metabolism. Nutrients, 7(9), 7437-7450. doi:10.3390/nu7095347
Zhang, T., Yamamoto, N., & Ashida, H. (2014). Chalcones suppress fatty acid-induced lipid accumulation through a LKB1/AMPK signaling pathway in HepG2 cells. Food & Function, 5(6), 1134-1141. doi:10.1039/c3fo60694e

下載圖示
QR CODE