研究生: |
陳盈吉 In-Ji , Chen |
---|---|
論文名稱: |
探究動態類比對於科學概念學習與概念改變歷程之研究--以國二學生學習氣體粒子概念為例 To inquiry the processes of students’s learning and conceptual change when they use dynamic analogy for learning--An example of 8th students to learn the concepts about gas particles’ movement-- |
指導教授: |
邱美虹
Chiu, Mei-Hung |
學位類別: |
碩士 Master |
系所名稱: |
科學教育研究所 Graduate Institute of Science Education |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 242 |
中文關鍵詞: | 類比 、動態表徵 、概念改變 、概念本體 、心智模式 |
英文關鍵詞: | Analogy, Dynamic representations, Cnoceptual change, Conceptual ontology, Mental models |
論文種類: | 學術論文 |
相關次數: | 點閱:240 下載:95 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
探究動態類比對於科學概念學習與概念改變歷程之研究
-以國二學生學習氣體粒子概念為例-
論文摘要
類比與多重表徵在科學教育的研究上已經有很多研究說明兩者皆有助於學生學習抽象的科學概念,而本研究試圖結合「類比」與「動態表徵」發展出「動態類比」教學,意即是具有動態表徵的類比教學,主要研究目的是希望透過動態類比的實徵研究,探究學生氣體粒子之概念學習與概念改變。
本研究以國二學生(現行八年級學生)57人為研究參與對象,共分為三組教學。其中對照組20人,教學方式為教師口語與板書教學,教學過程中不使用類比與動畫;類比組19人,教學過程中使用樂透彩球類比教學但不使用動畫;動態類比組18人,教學過程中以動態表徵方式呈現樂透彩球類比教學,三組之中各有6人參與前測晤談與後測晤談。
本研究的量化分析之結果顯示動態類比組與類比組在氣體粒子概念的成就表現上優於控制組;而在概念本體屬性的分析上,動態類比組較類比組與控制組更能快速的建立全面的突現(emergence)本體屬性,類比也有助於突現本體屬性的建立,只是需要較長的時間與教學;另外一方面,本研究初探學生對於密閉容器內的壓力變化的心智模式結果分為五種主要心智模式:活塞運動施壓模式、感覺粒子很擠模式、粒子彼此碰撞模式、粒子碰撞氣壁模式與混合模式。質化研究結果顯示,動態類比組與類比教學組的學生在教學過後較對照組學生更能產生一致的科學模式,而對照組則以混合模式居多。
綜合量化分析與質化分析結果顯示,動態類比與類比教學有助於學生學習困難的氣體粒子概念,其中動態類比組的成效較類比組好,類比相對於對照組而言也有較佳表現,因此對於教育上的建議則是若有足夠的經費與技術支援,發展動態類比有助於學生學習困難的科學概念;若是經費不足或無適當的設備支援,類比也是一個良善且功效良好的教學策略與概念改變工具。
To inquiry the processes of students’s learning and conceptual change when they use dynamic analogy for learning
- An example of 8th students to learn the concepts about gas particles’ movement-
Abstract
Both analogy and multiple representations play very important roles in science education. So many researches have demonstrated that they can help students learn abstract scientific concepts. The purpose of this study is trying to combine Analogy and Dynamic representations for developing Dynamic analogy instruction, and inquiring the processes of students’ learning and conceptual change about the movement of ideal gas particles.
There were fifty-seven 8th students joining this study and they were been randomly assigned into three groups.:1.The comparison group, the instruction treatment in this group did not involve analogy and animation. 2.The analogy group, the instruction treatment was Lotto-analogy, but no animation. 3.The dynamic analogy group, the instruction treatment were both Lotto-analogy and animation. There were six target students interviewed within each group.
The results of this study were as follows:
First, the dynamic analogy group and analogy group had better achievement and had greater effects in conceptual ontology than comparison group. Though dynamic analogy group acquired all whole emergence attributes more quickly than analogy group, in other words, analogy group needed more teaching and learning time to adapt Lotto-analogy.
Second, in the quantitative analysis of target students’ protocol data, there were five major mental models which be defined in this study. These were (1. Plunger-Driving model, (2. Crowed-Particles model, (3. Particles-Collided model, (4. Walls-Collided model, (5. Mixed models. The results of qualitative analysis revealed that students in dynamic analogy group and analogy group used the scientific models more consistently across different context. In the opposition, the students in comparison group used mixed models when they encountered different problem context.
To combine the results of quantitative and qualitative analysis showed that the dynamic analogy group was better than analogy group, and analogy group had greater effects than comparison group. So, the Lotto-analogy was a powerful analogy for students to learn the conceptions of movement about ideal gas particles. Take these results into account, there are two suggestions for science education. First, if the educational budgets are sufficient, dynamic analogy should be developed to help students learn difficult and abstract conceptions of idea gas. Second, if the budgets are not sufficient, a well-designed analogy will be a good instructional strategy and a suitable tool for conceptual change.
中文部分
王亦欣(2003):探討國二學生閱讀漫畫表徵的文本對地球科學概念學習的影響—以天文和溫室效應為例,台灣師大科教所碩士論文(未出版)。
史嘉章(2002):發展二階式試題以探討國高中學生氣體迷思概念。國立台灣師範大學科學教育研究所碩士論文(未出版)
林秀美(1998):電腦模擬在科技教育上之應用,教育科技與媒體,42期,23-31頁。
林孟慧(1998):理化類比對國三學生地球概念學習之影響。國立台灣師大科學教育研究所碩士論文(未出版)。
林靜雯(2000):由概念改變及心智模式初探多重類比對國小四年級學生電學概念學習之影響。國立台灣師大科學教育研究所碩士論文(未出版)。
邱美虹(1993):類比與概念學習。教育研究資訊,第1卷,第6期,第79-90頁。
邱美虹(1996):學習策略與科學學習。科學教育月刊,第191期,2-15。
邱美虹(2000):概念改變研究的省思與啟示。科學教育學刊,第八卷第一期,1-34。
邱美虹、陳盈吉和陳婉茹(2003):高中學生化學平衡迷思概念成因研究,台北市:國科會計畫。
邱美虹和高淑芬(1999):類比對國二學生學習原子結構概念之影響。師大學報,第44卷,第1&2期,第31-59頁。
邱美虹和林靜雯(2002):以多重類比探究兒童電流心智模式之改變。科學教育學刊,第十卷第二期,109-134。
邱顯博(2002):國二、國三學生的擴散作用概念與概念改變之研究。國立台灣師大科學教育研究所碩士論文(未出版)。
姚伊美(1994):多媒體在科學教育方面的應用,科學教育月刊,第174期,39-45頁。
施能木(1997):探討多媒體電子書之潛在學習問題,視聽教育雙月刊,第38卷6期,28-34頁。
洪振方(1987):學生空氣體積及壓力之粒子模型概念與推理能力之相關研究。國立台灣師範大學科學教育研究所碩士論文(未出版)。
洪蘭譯(2001),大腦的秘密檔案,Carter.R.原著(1998),台北:遠流出版社。
徐順益(1997):國三學生、師大學生、及國中理化科教師在物理概念之自發性類比物的發展研究。物理教育,1(1),35-50。
高淑芬(1997):類比對國二學生科學概念學習之影響。國立台灣師大科學教育研究所碩士論文(未出版)。
張仁邦和劉國權(1999):斜拋運動的電腦模擬,科學教育研究與發展,第14期,34-52頁。
張仁邦和張振松(2000):日出日落的電腦模擬,科學教育研究與發展專刊,89.12月,47-68頁。
張仁邦和蕭倍元(2000):地球運動之電腦模擬,國教新知,第46卷3期,58-68頁。
張欣怡(1997):地球科學不同克文表徵教材對學習表現之研究,台灣師大科教所碩士論文(未出版)。
張春興(1996):現代心理學,台北:東華出版社。
莊雅茹(1996):CAL軟體動畫介面設計,教學科技與媒體,28期,13-18頁。
黃幸美(1994):兒童的類比思考與發展。國立政治大學教育與心理研究,17期,477-506。
黃寶鈿和黃湘武(1985):學生空氣概念:粒子性質及動力平衡。中華民國七十四年科學教育學術研討會論文彙編。
劉純興(1999):小組討論的類比學習對物力概念轉變之研究。國立彰化師範大學科學教育研究所碩士論文(未出版)。
鄭志鵬(1998):探究高中學生之氣體概念及相關粒子概念。國立台灣師範大學化學研究所碩士論文(未出版)
藍偉瑩(2002):小組互動與概念改變機制之探討—以物質狀態與氣體性質概念為例。國立台灣師範大學科學教育研究所碩士論文(未出版)。
英文部分
Anderson, J. R.(1978). Arguments concerning representations for mental imagery. Psychological Review, Vol. 85, No.4, 249-277.
Anisworth, S.(1999). The functions of multiple representations. Computer and Education, 33, 131-152.
Benson, D. L.(1993). Students’ perceptions of the nature of nature of gases. International Journal of Science Education. 30(6), 587 -597.
Brown, D., & Clement, J.(1989). Overcoming misconceptions via analogical reasoning:Abstract transfer versus explanatory model construction. Instructional Science, 18 , 237-261.
Chi, M. T. H. (1992). Conceptual change within and across ontological categories: Implications for learning and discover in science. In R.Giere(Ed.), Cognitive models of science:Minnesota studies in the philosophy of science, 129-186, Minneapolis: University of Minneosota Press.
Chi, M. T. H. (1993). Quantifying qualitative analyses of verbal data:A practical guide. Journal of Learning Science, 6(3), 271-315.
Chi, M. T. H. (2000). Cognitive understanding levels. In Encyclopedia Of Psychology, 2, 141-151. APA and Oxford University Press.
Chi, M.T.H. (in press). Common sense conceptions of emergent process. Paper will be published in The Journal of the Learning Science.
Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121-152.
Chi, M. T. H., & Slotta, J. D.(1993). The ontological coherence of intuitive physics. Cognitive and Instruction, 10, 249-260.
Chi, M. T. H., Slotta, J. D., & de Leeuw, N.(1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and Instruction, 4. 27-43.
Chi, M.T.H., & Roscoe, R.D. (2002). The processes and challenges of conceptual change. In M. Limon and L. Mason (Eds). Reconsidering Conceptual Change: Issues in Theory and Practice. Kluwer Academic Publishers, The Netherlands, 3-27.
Chi, M. T. H., & Hausmann, R. G. M. (2003). Do radical discoveries require ontological shift? L. Shavinina & R. Sterberg(Eds.) International Handbook on Innovation (Vol.3), New York:Elsevier Science.
Chinn, C. & Brewer, W. (1993). The role of anomalous data in knowledge acquisition:An theoretical framework and implication for science education. Review of Educational Research, 63, 1-49.
Clement, C. A. & Gentner, D.(1991). Systematicity as a selection constraint in analogical mapping. Cognitive Science, 15, 89-132.
Clement, J. (1993). Using bridge analogies and anchoring intuitions to deal with students’ preconceptions in physics. Journal of research in science teaching, 30(10) , 1241-1257.
Clement, J. (1998). Expert novice similarities and instruction using analogies. Journal of research in science teaching, 32(3), 259-270.
Clement, J.(1988). Observed methods for generating analogies in scientific problem solving, Cognitive Science, 12, 563-586.
Clement, J., Brown, D. & Zietsman, A. (1989). Not all preconceptions are misconceptions:Finding” anchoring conceptions” for grounding instruction on stundents’ intuitions. International Journal of Science Education. 11, 554-565.
Dagher, Z. R. (1995). Analysis of analogy used by science teachers. Journal of research in science teaching, 32(3), 259-270.
Daron, R. L.(1972). Misconception of selected science concepts held by elementary school students. Journal of research in science teaching, 9(2), 127-137.
Davis, R., Shrobe, H., & Szolovits, P. (1993). What is a Knowledge Representation? AI Magazine, 14(1), 17-33.
de Berg, K. C. (1992). Students’ thinking in relation to Pressure-Volume changes of a fixed amount of air:The semi-quantitative context. International Journal of Science Education. 14(3), 295-303.
de Berg, K. C. (1995). Student understanding of the volume, mass, and pressure of air within a sealed syringe in different states of compression, International Journal of Science Education.32(8), 871-884.
de Jong, T., Ainsworth, S., Dobson, M., van der Hulst, A., Levonen, J., Reimann, P., Sime, J-A., Maarten W., Spada, H., & Swaak, J. Acquiring knowledge in science and mathematics: the use of multiple representations in technology-based learning environments. In Maarten W.van Someren et al.,(Eds.)Learning with multiple representations. 9-40.
Dierks, W.(1990). An approach to the educational problem of introducing the discontinuum concept in secondary chemistry teaching and an attempted solution. In P.L. Linjise, P. Licht, de Vos, & A.J. Waarlos(Eds.), Relating macroscopic phenomena to micropic particles, 177-182. Utrecht, The Netherlands:Centre for Science and Mathematics Education.
diSessa, A.A.(1988). Knowledge in pieces. In G. Forman &P. Pufal(Eds.), Constructivism in the computer age. 49-70, Hillsdale, NJ:Lawrence Erlbaum Associations, Inc.
diSessa, A.A.(1993). Toward an epistemology of physis. Cognitive and instruction, 10, 105-225.
Dobson, M. W.(1996). Specificity and learning with graphics. Proceedings of the IEE Colloquium Thinking with Diagram. London:IEE.
Dreistadt, R. (1968). An analysis of the use of analogies and metaphors in science. Journal of Psychology, 68(1), 97-116.
Duit, R. & Treagust, F. T.(2003). Conceptual change: a powerful framework for improving science teaching and learning. International Journal of Science Education, 25(6), 671-688.
Duit, R.(1991). On the role of analogies and metaphor in learning science. Science Education. 75(6), 649-672.
Duit, R.(1999). Conceptual change approaches in science education. New perspectives on conceptual change. 263-282. In W. Schnotz., S. Vosniadou, & M. Carretero(Eds.), Amsterdam, NL:Pergamon.
Duit, R. (2002). Visions, research, and school practice. A vision for science education:Response to the work of Peter Fensham. In R. Cross, Ed., London:Rourledge Falmer.
Feiner, S. & Beshers, C.(1990). Visualizing n-dimensional virtual worlds with n-vision. Computer Graphics, 24(2):37—38.
Furio,C. J., Perez, J. H., & Harris, H. H.(1987). Parallels between adolescents’ conception of gases and the history of chemical. Journal of Chemical Education. 64(7), 616-618.
Gabel, D, L., Samuel, K, V., & Hunn, D. (1987). Understanding the particulate nature of matter. Journal of Chemical Education. 64(7), 695-697.
Garnett, P.J. & Hacking, M.W.(1995). Students’ alternative conceptions in chemistry:A review of research and implication for teaching and learning. Studies in Science Teaching. 25, 69-95.
Gentner, D.(1983). Structure-Mapping:A theory framework for analogy. Cognitive Science, 7, 155-170.
Gentner, D.(1988). Metaphor as structure-mapping:the relational shift. Child development, 59, 47-59.
Gentner, D.(1989). The mechanisms of analogical learning. In S. Vosniadou. & A. Ortony(Eds.), Similarity and analogical reasoning. London:Cambridge University press.
Gentner, D. & Gentner, R.(1983). Flowing waters or teeming crowds:Mental models of electricity. In D. Gentner & A.L. Stevens(Eds.) Mental models. Hillsdale, NJ:Erlbraum. Press.
Glynn,S.M., Britton,B.k., Semrud-Clikeman,M. & Muth,K.D.(1989). Analogical reasoning and problem solving in the textbooks. In J.A. Glocer., R.R. Ronning. & C.R. Reynolds(Eds.), Handbook of creativity:Assessment, Theory, and Reasearch. New York:Plenum.
Gordin, D.N. & Pea, R.D.(1995).Prospects for scientific visualization as an educational technology. Journal of the Learning Science, 4(3), 249-279.
Greca, I.M. & Moreira, M.A.(2000).Mental models, conceptual models and modeling. International Journal of Science Education, 22(1), 1-11.
Griffiths,A.K. & Preston,K.R.(1989). An investigation of grade 12 students’ misconceptions relating to fundamental characteristics of molecules and atoms. Paper presented at Annual meeting of National Association for Research in Science Teaching.(62nd, San Francisco, CA, March 30-April 1, 1989).ED 304347.
Haidar, A. H. & Abraham, M. R.(1991). A comparison of applied and theoretical knowledge of concepts based on the particular nature of matter. Journal of research in science teaching, 28(10),919-938.
Harrison, A.G., & Treagust,D.F.(1996). Secondary students’ mental models of atoms and molecues implications for teaching chemistry. Science Education,80(5),509-534.
Harrision, A. G., & Treagust, D. F.(2002). The particulate nature of matte:challenges in understanding the submicroscopic world. In Girbert, J. et al.,(Eds.)Chemical Education:Toward research-based practice. Kluwer academic publishers.
Holyoak, K. J. & Thagard, P.(1990). A constraint-satisfaction approach to analogue retrieval and mapping. In K.J. Gilhooly., M.T. Keane., R.Logie. & G. Erdos.(Eds.) Lines of thinking: Reflection on the psychology of thought(Vol. 1.1). New YOrk:Wiley Press.
Johnson, P.(1998). Progression in children’s understanding of a “basic” particle theory:A longitudinal study. International Journal of Science Education, 20(4), 393-412.
Keane, M.T.(1990). Incremental analogizing:Theory and model. In K.J. Gilhooly., M.T. Keane., R.Logie. & G. Erdos.(Eds.) Lines of thinking: Reflection on the psychology of thought(Vol. 1.1). New YOrk:Wiley Press.
Keane, M.T., Ledgeway, T., & Duff, S.(1994). Constraints on analogical mapping:A comparison of three models. Cognitive Science, 18, 387-438.
Keil, F.(1979). Concepts, kinds and cognitive development. Cambridge, MA:MIT Press.
Kolodner, J.L.(1997). Educational implications of analogy:A view from Case-Based Reasoning. American Phychologist, 52, 35-44.
Lee,O., Eichinger,D.C., Anderson,C.W., Berkheimer, G., & Blakeslee,T.D.(1993). Changong middle school stundents’ conceptions of matter and molecules. Journal of research in science teaching, 30(3),249-270.
MacIsaac, D. & Liu, X.(2004). Mental models or Pieces of knowledge:Impetus theory in university students’ understanding of force. Paper presented in 2004 NARST annual conference in Vancouver.
Mayer, R. E.(1997). Multimedia learning: Are we asking the right Questions? Educational Psychologist, 32(1),1-19.
Mayer, R. E.(2001). Multimedia learning. Cambridge, UK: Cambridge University .Press.
Medin, D. L. & Smith, E. E.(1984). Concepts and concept formation. Annual Review of Psychology, 35,113-138.
Mirshra, P., Spiro, J.,& Feltovich, P. J.(2002). Technology, representation and cognition.
Nakhleh, M.(1994). A review of microcomputer-based labs:How have they affected science learning? Journal of Computer, 13, 187-202.
Nelson, D.L., Reed, V.S.,& McEvoy, C.L.(1977). Learning to order pictures and words: A model of sensory and semantic encoding. Journal of Experimental Psychology, Vol 97, No 1, 1-15.
Novak, A.M., Gleason, C.T., Mahoney,J. & Krajcik, J.S.(2002). Inquiry through portable technology. Science Scope, Nov/Dec, 18-21.
Novak, S. & Nussbaum, J.(1978). Junior high school pupils’ understanding of the particulate nature of matter:an interview study. Science Education, 62(3), 273-281.
Novick, S. & Nussbaum, J.(1978). Junior high school pupils understanding of particulate nature of matter:A review study. Science Education, 62(3),273-281.
Novick, S. & Nussbaum, J.(1981). Pupils understanding of the particulate nature of matter.:A cross-age study. Science Education, 65(2),187 -196.
Paivio, A.(1971). Imagery and Verbal Process. New York: Holt,Rinehart & Winston.
Paivio, A.(1986). Dual coding theory. In mental representations: A dual Coding Approach. New York: Oxford University Press.
Paivio, A.(1991). m.Images in minds: the evolution of a theory. New York: Harvester Wheatsheaf.
Pintrich, P.R.(1999). Motivational beliefs as resources fo and constraints on conceptual change. In Schnotz, W., Vosniadou, S. & Carretero, M.(Eds.) New perspectives on conceptual change. 33-50.
Pintrich, P.R., Marx, R.W., & Boyle, R.A.(1993). Beyond conceptual change:The role of motivational beliefs and classroom contextual factors in the process of conceptual change. Review of Education Research., 63, 176-199.
Pozo, J.I., Gomez, M.A. & Sanz, A.(1999). When changes not mean replacement:Different representations for different contexts. In Schnotz, W., Vosniadou, S. & Carretero, M.(Eds.) New perspectives on conceptual change. 161-174.
Pylyshyn, Z. W. (1973). What the mind's eye tells the mind's brain: A critique of mental imagery. Psychological Bulletin, 80(1), 1-24.
Ramirez, R., Anne, M. & John, C.(1998). In search of dissonance:the evolution of dissonance in conceptual change theory. Paper presented at the Annual meeting of the National Association for Research in Science Teaching, San Diego, CA,19-22.
Rieber, L.P., Boyce, M.J., & Assad. C.(1990). The effects of computer animations on adult learning and retrieval tasks. Journal of computer based instruction, 17, 46-52.
Riger, S. D. & Commins, R. H.(1991). Using student-created metaphors to comprehend Geologic Time. Journal of Geologic Education, 39, 9-11.
Rohr, M. & Reimann, P.(1998), Reasoning with multiple representations when acquiring the particulate model of matter. In Maarten W.van Someren et al.,(Eds.)Learning with multiple representations. 41-66.
Salomon, G. (1979). Interaction of media, cognition, and learning: An exploration of how symbolic forms cultivate mental skills and affect knowledge acquisition. San Francisco, CA: Jossey-Bass.
Schnotz, W. & Preuβ, A.(1999). Task-dependent construction of mental models as a basis for conceptual change. In Schnotz, W., Vosniadou, S. & Carretero, M.(Eds.) New perspectives on conceptual change. 193-222.
Schoenfeld, A. H., Smith, J. P., III, & Arcavi, A. (1993). Learning -- the microgenetic analysis of one student's understanding of a complex subject matter domain. In R. Glaser (Ed.),Advances in Instructional Psychology, 4. Hillsdale, NJ: Erlbaum.
Sere, M.G.(1985). Children’s conceptions of gaseous state, prior to teaching. European Journal of Science Education, 8(4), 413-425.
Sime, J-A. (1998). Model switching in a learning environment based on multiple models. Journal of Interactive Learning Environments, 5, 109-125.
Slotta, J. D., Chi, M. T. H., & Joram, E.(1995). Assigning students’ misclassifications of physics conceptions:An ontological basis for conceptual change. Cognitive and Instruction, 13, 373-400.
Slotta, J. D., & Chi, M. T. H.(1999, in prep). Overcoming robust misconceptions through ontology training.
Solomon J. (1983). Learning about energy: how pupils think in two domains. European journal of science education, 5, 49-59.
Solomon J. (1984). Prompts, cues and discrimination: The utilization of two separate knowledge systems. European journal of science education, 6, 277-284.
Spiro, R. J., Feltovish, P. J., Coulson, R. J., & Andeson, D. K.(1989). Multiple analogies for complex conceptions:Antidotes for analogy-induced misconception in advanced knowledge acquisition. In S. Vosniadou & A. Ortony(Eds.)Similarity and analogical reasoning.(pp.498-51). Cambridge:Cambridge University Press.
Stavy, R.(1988).Children’s conceptions of gas. International Journal of Science Education, 10(5), 553-560 .
Stavy, R.(1990). Using analogy to overcome misconceptions about conservation of matter. Journal of research in science teaching,28(4),305-313.
Stepans, J.(1991). Development patterns in students’ understanding of physics concepts. In S.M. Glynn., R.H. Yeany., & B.K. Britton(Eds.). The Psychology of Learning Science. New Jersey:Hillsadle.
Strike, K.A. & Posner, G.J.(1992). A revisionist theory of conceptual change. In R. Duschl & Hamilton(Eds.), Philosophy of science, cognitive psychology, and education theory and practice, 147-176. Albany, Ny:SUNY.
Tabachneck, H.J.M., Leonardo, A.M., & Simon, H.A. (1994). How does an expert use a graph? A model of visual and verbal inferencing in economics. In A. Ram & K. Eiselt (Eds.), 16th Annual conference of the cognitive science society (pp. 842-847). Hillsdale, NJ: Erlbaum.
Tao, P. K., & Jones, G.(1999). The process on conceptual change in force and motion during computer-supported physics instruction. Journal of research in science teaching,36(7),859-882.
Thagard, P.(1992). Analogy, explanation, and education. Journal of research in science teaching,29(6),537 -544.
Thiele, R.B. and Treagust, D.F. (1994). The nature and extent of analogies in secondary chemistry textbooks. Instructional Science, 22, 61-74.
Thompson, P. W. (1992). Notations, conventions and constraints: Contributions to effective uses of concrete materials in elementary mathematics. Journal for Research in Mathematics Education, 23, 123-147.
Toulmin, S.(1972). Human underatanding:Vol. I. Oxford:Oxford university press.
Tyson, L. M., Venville, G. J., Harrision, A. G., & Treagust, D. F.(1997). A multidimensional framework for interpreting conceptual change events in the classroom. Science Education, 81(4),387-404.
Vosniadou, S. & Brewer, W.(1992). Mental models of the earth. Cognitive Psychology, 24, 535-585.
Vosniadou, S. & Brewer, W.(1994). Mental models of the day/night cycle. Cognitive Science, 18, 123-183.
Vosniadou, S.(1989). Analogical reasoning in knowledge acquisition. In S. Vosniadou & A. Ortony.(Eds.). Similarity and analogical reasoning. Cambridge:Cambridge University Press, 413-437.
Vosniadou, S.(1998). From conceptual development to science education:a psychological point of view. International Journal of Science Education, 20(10), 1213-1230.
Winn, B.(1987). Charts, graphs, and diagrams in educational materials. The Psychology of Illustration, Vol.1:Basic Research, 152-198.
Wu, H.-K., Krajcik, J. S., & Soloway, E. (2001). Promoting conceptual understanding of chemical representations: students' use of a visualization tool in the classroom. Journal of Research in Science Teaching, 38, 821-842.
Yerushamly, M. (1991). Student perceptions of aspects of algebraic function using multiple representation software. Journal of Computer Assisted Learning, 7, 42-57.
Zeitoun. H. H.(1984). Teaching scientific analogies:A proposed model. Research in Science and Technological Education. 2, 107-125.
Zoubeida, R. D.(2002)..In J. Mintzes, J .H. Wandersee & J.D. Novak(eds.),Teaching Science for Understanding.