簡易檢索 / 詳目顯示

研究生: 曾信豪
Hsin -Hao Tseng
論文名稱: 利用酵素工程技術提升海藻糖合成酶的酵素轉化效率
Improvement in the conversion rate of trehalose synthase by enzyme engineering
指導教授: 李冠群
Lee, Guan-Chiun
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 118
中文關鍵詞: 海藻糖海藻糖合成酶分子模擬突變轉化率蔗糖異構酶葡萄糖異構酶validoxylamine A
英文關鍵詞: trehalose, trehalose synthase, molecule modeling, mutation, conversion rate, sucrose isomerase, glucose isomerase, validoxylamine A
論文種類: 學術論文
相關次數: 點閱:645下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 海藻糖 (trehalose) 存在於許多生物體當中,除了作為能量的儲存形式之外,在脫水等逆境時穩定蛋白質和生物膜的結構,保護細胞免於環境壓力。在食品、化妝、醫藥業上都有廣泛的應用。海藻糖合成酶 (trehalose synthase,TS) 為可逆催化麥芽糖分子內鍵結轉化成海藻糖的酵素,屬於一種麥芽糖異構酶,同時,TS 亦有水解麥芽糖產生葡萄糖的副反應,為海藻糖的生合成路徑之一。本研究在提升 TS 的轉化效率,並以Deinococcus radiodurans trehalose synthase (DrTS) 為研究對象,利用已知結構之 SI (sucrose isomerase) 為模板模擬出 DrTS 立體三級結構。結構顯示,DrTS 的整體結構與一般的 α-amylase 的結構相似,在中央擁有一個催化的區域,由 (β/α)8 的桶狀結構所組成,以及一個富有 loop 的子區域和兩個反向平行的 β-sheet 區域。藉由將麥芽糖偶合來模擬 DrTS 與受質結合的立體結構,發現距離麥芽糖 5 Å 的周圍有 21 個胺基酸會與受質結合。從 DrTS與 SI 的胺基酸序列與立體結構的比對,發現這 21 個胺基酸當中有 9 個是不相同的,推測這 9 個胺基酸可能造成 DrTS 與 SI 功能上有差異的原因,再與其他 TS 的胺基酸比對後,發現這 9 個不同的胺基酸中,有 3 個胺基酸不同於其他 TS,分別為 Thr154、Phe174 和 Gln254。推測這 3 個胺基酸位置可能是決定不同的 TS 具有不同生化性質或轉化率的原因,本研究利用定點飽和突變與高效率純化暨活性篩選系統針此 3 個胺基酸進行突變,篩選出高海藻糖轉化率突變種,其中在 Thr154 突變庫當中,挑選出兩株活性大於野生型三倍者,經 DNA 定序顯示其 Thr154 皆被取代為 Phe。此外,Asn317 被預測可能與參與水解反應的水分子結合,而在 316 位置 DrTS 具有一種與其他 SI 明顯不保守的胺基酸 Arg,推測可能也會影響與水分子的結合,以及 Asn253 被預測可能藉由阻礙活性中心的開口處保護中間產物,避免水分子進入催化中心造成水解。為了減少水解的副反應,因此將親水性的 Asn317 藉由定位突變取代成疏水性的 Phe、Leu 或 Ala,並將帶正電的 Arg316 藉由定位突變取代成不帶電性的 Gly,結果顯示 Asn317 突變成 Phe、Leu 或 Ala 以及 Arg316 突變成 Gly 雖然會使水解副反應減少,然而卻會造成酵素活性降低。將 Asn253 藉由定位突變取代成芳香族的 Phe,結果顯示 Asn253 突變成Phe 會使水解副反應與酵素活性完全喪失。此外利用另兩種策略來改善 DrTS 轉化率。一種是偶合葡萄糖異構酶 (Glucose isomerase,GI),將 TS 反應副產物葡萄糖轉化成果糖,來減少副產物的抑制效果,結果顯示偶合 GI 能提升 DrTS 在高溫的海藻糖轉化率約 4%。另一種方法是抑制 TS 的逆反應,藉由加入 α-葡萄糖苷酶抑制劑 (validoxylamine A、validamycin A、kanamycin A、acarbose 或 azactidine) 或是海藻糖的類似物 (lactose、lactulose 或 isomaltulose)。結果 kanamycin A 抑制逆反應比抑制正反應多 5% ,validoxylamine A、validamycin A 或 acarbose 對正逆反應的抑制程度相近,然而 azactidine、lactose、lactulose或 isomaltulose 對 DrTS 的正逆反應沒有影響。以上結果可以提供從事 TS 之蛋白質工程的參考。

    Trehalose, a non-reducing disaccharide, existing in various organisms can serve as energy storage and as a protectant of protein and lipid against various stresses. It has become as an important compound in foods, cosmetics and pharmaceuticals industries. Trehalose synthase (TS) is one of the biosynthesis pathways of trehalose, which reversibly catalyzes the intramolecular transglucosylation (isomerization) of maltose to produce trehalose, also known as maltose isomerase, as well as the side reaction of irreversible hydrolysis of maltose to produce two glucose molecules. However, the structure as well as the enzymatic mechanism of TS has not been determined. Sucrose isomerase (SI) and TS have isomerase activity and belong to the same subfamily of the α-amylase family. Three-dimensional structures of three SIs have been determined. The tertiary structural model of Deinococcus radiodurans trehalose synthase (DrTS) which has been characterized as a cold-active enzyme was built using a SI structure as template. The overall DrTS structure is highly conserved with α-amylase family. It possesses a central catalytic domain formed by a (β/α)8-barrel structure, a loop rich subdomain and two antiparallel β-sheet domains. The DrTS-substrate complex model was also built by docking with its substrate maltose. 21 amino acid residues located in close contact with maltose within the 5 Å cut-off distance have been identified and may play important roles in substrate binding. By amino sequence and three-dimensional structure alignments with the SIs, nine of the 21 residues were identified as different from SIs and may play important roles in the TS function. Among these nine distinct residues, Thr154, Phe174, and Gln254 are not conserved in the TS family from various species. To deduce the three residues are relative with biochemical properties and conversion rate of TS, site-specific saturation mutations of these residues were performed to screen for mutant enzymes which exhibit high isomerization activity. A high-throughput purification and assay system was developed to screen Thr154 random libraries, resulting that 2 coloies with higher activies than the wild type, showing 3-fold increased activity, DNA sequencing showed that Thr154 were altered to Phe. Furthermore, the Asn317 was predicted to interact with the water molecule which may participate in the hydrolysis side-reaction. The Arg316 may influence the catalytic water binding whereas it is non-identical in the SIs. The Asn253 was predicted to be able to prevent hydrolysis by blocking the entrance of the active site pocket. To reduce hydrolysis activity of the side reaction, the hydrophilic Asn317 were altered to hydrophobic Phe, Leu or Ala by site-directed mutagenesis. The non-identical and positively charged of Arg316 to nonpolar Gly may result in reducing hydrolysis side-reaction, and the Asn254 were altered to aromatic Phe.The results showed that the activities of N317A, N317F, N317L and R316G mutants were signicantly decreased, and N253F mutant led to a complete loss in activity. In addition, two approaches were also performed to improve the conversion rate of DrTS. One is coupling TS with glucose isomerase (GI) which converts and thus removes the side-reaction product glucose into fructose to reduce the product inhibition. The results indicated that the trehalose conversion rate of GI-coupled DrTS was enhanced. The other one is inhibiting the reversed reaction of TS by adding α-glucosidase inhibitors (validoxylamine A, validamycin A, kanamycin A, acarbose or azactidine), or trehalose analogs (lactose, lactulose or isomaltulose). The results indicated that both the forward and reversed reactions of DrTS were inhibited by validoxylamine A, validamycin A, kanamycin A and acarbose. However, azactidine, lactose, lactulose and isomaltulose almost had no inhibition effect on the forward and reversed reaction of DrTS. In general, the results provide feasible methods to improve the conversion rate of DrTS for industrial application of trehalose production.

    表次 viii 圖次 ix 附錄 xi 摘要 xii Abstrate xv 壹、 緒論 1 一、 海藻糖的性質 1 二、 海藻糖的應用 4 三、 海藻糖的生合成路徑 6 四、 海藻糖合成酶 (trehalose synthase,TS) 的介紹 7 1. TS 的簡介 7 2. TS 的海藻糖轉化率 8 3. TS 的副反應 9 4. TS 推測的作用機制 10 5. 耐輻射奇異球菌海藻糖合成酶 (Deinococcus radiodurans trehalose synthase,DrTS) 13 五、 蛋白質結構模擬 13 1. 蛋白質三級結構模擬 13 2. 蛋白質嵌合模擬 15 六、 蛋白質工程 15 貳、 研究目的 17 參、 材料與方法 19 一、 模擬 DrTS 蛋白質三級結構 19 二、 模擬 DrTS 與麥芽糖的複合物立體結構 19 三、 DrTS 蛋白質工程 20 1. DrTS 基因重組質體 20 2. 宿主菌株與培養基的選擇 20 3. 質體 DNA 製備 21 4. DNA 之定量與電泳 21 5. 突變設計 21 四、 DrTS 蛋白質表達 24 1. 勝任細胞 (competent cell) 的製備 24 2. E.coli 轉型 (transformation) 25 3. DrTS 蛋白質表達 25 五、 DrTS 蛋白質純化 26 1. 蛋白質粗萃取液 26 2. 固定化金屬親和性層析法純化蛋白質 26 3. 高效能 96 孔盤型式蛋白質純化與透析 27 六、 蛋白質分析 28 1. 蛋白質電泳 28 2. 蛋白質定量 31 七、 酵素活性分析 31 1. TS 活性分析-HPLC (High-performance liquid chromatography)... 31 2. TS 活性分析-Maltase-coupled TS assay 32 八、 Glucose isomerase (GI)-coupled TS 33 1. 葡萄糖或果糖對 DrTS 活性影響 33 2. GI 活性分析 34 3. GI-coupled TS 34 九、 α-澱粉酶抑制劑或海藻糖類似物對 DrTS 正逆反應活性影響 34 十、 利用酵素水解或酸水解生產 validoxylamine A (VAA) 35 1. 酵素水解 35 2. 酸水解 36 3. Validamycin A (VA) 與 VAA分析 36 4. VAA純化 36 5. 管柱再生與離子交換 37 肆、 結果 38 一、 模擬 DrTS 與麥芽糖的複合物立體結構 38 1. 胺基酸序列搜尋比對 38 2. 模擬 DrTS 的蛋白質三級結構 38 3. DrTS 的受質結合位的預測 39 二、 DrTS 的蛋白質工程 41 1. DrTS 的點突變 41 2. 野生型 DrTS 的轉化率分析 42 3. 突變株 DrTS (N317A) 的轉化率分析 42 4. 突變株 DrTS (N317F) 的轉化率分析 42 5. 突變株 DrTS (N317L) 的轉化率分析 43 6. 突變株 DrTS (R316G) 的轉化率分析 43 7. 突變株 DrTS (N253F) 的轉化率分析 44 8. 野生型及各突變株 DrTS 的比活性比較 44 9. 定點飽和突變株 DrTS (T154X) 的比活性分析 45 三、 利用 GI-coupled TS 提升 DrTS 的海藻糖轉化率 45 1. 葡萄糖對 DrTS 的活性影響 45 2. 果糖對 DrTS 的活性影響 45 3. GI 的活性分析 45 4. GI-coupled DrTS 46 四、 抑制 DrTS 逆反應以提升海藻糖轉化率 46 1. DrTS 的逆反應轉化率分析 46 2. VA 對 DrTS 的正逆反應活性的影響 46 3. Kanamycin A 對 DrTS 的正逆反應活性影響 47 4. Acarbose 對 DrTS 的正逆反應活性影響 47 5. VAA 對 DrTS 的正逆反應活性影響 47 6. 海藻糖類似物 (azactidine、lactulose、lactose、sucrose、thiodiglucoside、melibiose 或 isomaltulose) 對 DrTS 的正逆反應活性影響... 47 六、 利用酵素水解或酸水解生產 VAA 48 1. 水解實驗 48 2. VAA 的純化 49 伍、 討論 50 一、 模擬 DrTS 與麥芽糖的複合物立體結構 50 1. 模擬 DrTS 的蛋白質三級結構 50 2. DrTS受質結合位的預測 52 二、 DrTS 的蛋白質工程 54 1. 野生型 DrTS 的轉化率分析 54 2. 突變株 DrTS (N317A、N317F 與 N317L) 的轉化率分析 54 3. 突變株 DrTS (R316G) 的轉化率分析 55 4. 突變株 DrTS (N253F) 的轉化率分析 55 5. 突變株 DrTS (T154F) 56 三、 利用 GI-coupled TS 提升 DrTS 的海藻糖轉化率 56 1. 葡萄糖或果糖對 DrTS 的活性影響 57 2. GI-coupled TS 57 四、 抑制 DrTS 逆反應以提升海藻糖轉化率 58 1. DrTS 的逆反應轉化率分析 58 2. α-澱粉酶抑制劑或海藻糖類似物對 DrTS 正逆反應活性的影響 59 五、 利用酵素水解或酸水解生產 VAA 60 1. 酵素水解 60 2. 酸水解 60 陸、 參考文獻 62 表次 表一、定點飽和突變的引子設計 67 表二、定位突變的引子設計 68 表三、PDB 資料庫中 DrTS 的胺基酸序列搜尋比對 69 表四、比較 SI 與 DrTS 的功能性胺基酸 70 圖次 圖一、模擬 DrTS 的蛋白質三級結構 71 圖二、模擬 DrTS 與麥芽糖的複合物立體結構 72 圖三、DrTS 受質結合位的預測 73 圖四、DrTS 與 SI 的活性中心結構比對 74 圖五、DrTS、MutB、SmuA 與 PalI 的胺基酸序列及二級結構比對 75 圖六、不同種 TS 的胺基酸序列比對 76 圖七、MutB 與 DrTS 的催化水分子結合位 77 圖八、突變 Asn317成疏水性胺基酸 Ala、Phe 或 Leu 78 圖九、MutB 與 DrTS 的芳香族胺基酸 Phe 夾子構造 79 圖十、突變 Asn253 成芳香族的胺基酸 Phe 80 圖十一、突變株 DrTS 的 DNA 定序 81 圖十二、定位突變實驗的蛋白質純化 82 圖十三、野生型 DrTS 的轉化率分析 83 圖十四、突變株 DrTS (N317A) 的轉化率分析 84 圖十五、突變株 DrTS (N317F) 的轉化率分析 85 圖十六、突變株 DrTS (N317L) 的轉化率分析 86 圖十七、突變株 DrTS (R316G) 的轉化率分析 87 圖十八、突變株 DrTS (N253F) 的轉化率分析 88 圖十九、野生型與突變株 DrTS 的轉化率比較 89 圖二十、野生型與突變株 DrTS 的比活性比較 90 圖二十一、定點飽和突變株 DrTS (T154X) 的比活性分析 91 圖二十二、突變 Thr154成芳香族的胺基酸 Phe 92 圖二十三、葡萄糖對 DrTS 的活性影響 93 圖二十四、果糖對 DrTS 的活性影響 94 圖二十五、GI 的活性分析 95 圖二十六、GI-coupled DrTS 96 圖二十七、DrTS的逆反應轉化率分析 97 圖二十八、VA 對 DrTS 的正逆反應活性影響 98 圖二十九、Kanamycin A 對 DrTS 的正逆反應活性影響 99 圖三十、Acarbose 對 DrTS 的正逆反應活性影響 100 圖三十一、VAA 對 DrTS 的正逆反應活性影響 101 圖三十二、酵素水解生產 VAA 103 圖三十三、酸水解生產 VAA 及純化 104 附錄 附錄一、海藻糖 (α,α-1,1- trehalose) 結構圖 105 附錄二、海藻糖的特性 106 附錄三、海藻糖的生合成途徑 107 附錄四、已定性的海藻糖合成酶 108 附錄五、海藻糖合成酶與α-澱粉酶家族所具有的四個保守區及其催化和受質結合位 109 附錄六、α-澱粉酶的三級結構 110 附錄七、α-澱粉酶的反應機制 111 附錄八、推測的 TS 的作用機制 112 附錄九、PCR 流程 113 附錄十、MutB的三級結構 116 附錄十一、不同種 SI 的產物專一性及水解活性 117 附錄十二、VAA、VA 與海藻糖的結構 118

    Adams, R.P., Kendall, E., Kartha, K.K., 1990. Comparison of free sugars in growing desiccated plants of Selaginella-Lepidophylla. Biochem Syst Ecol 18, 107-110.
    Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J.H., Zhang, Z., Miller, W., Lipman, D.J., 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389-3402.
    Altschul, S.F., Wootton, J.C., Gertz, E.M., Agarwala, R., Morgulis, A., Schaffer, A.A., Yu, Y.K., 2005. Protein database searches using compositionally adjusted substitution matrices. Febs J 272, 5101-5109.
    Aroonnual, A., Nihira, T., Seki, T., Panbangred, W., 2007. Role of several key residues in the catalytic activity of sucrose isomerase from Klebsiella pneumoniae NK33-98-8. Enzyme Microb Tech 40, 1221-1227.
    Avonce, N., Leyman, B., Mascorro-Gallardo, J.O., Van Dijck, P., Thevelein, J.M., Iturriaga, G., 2004. The Arabidopsis trehalose-6-P synthase AtTPS1 gene is a regulator of glucose, abscisic acid, and stress signaling. Plant Physiol 136, 3649-3659.
    Chen, Y.S., Lee, G.C., Shaw, J.F., 2006. Gene cloning, expression, and biochemical characterization of a recombinant trehalose synthase from Picrophilus torridus in Escherichia coli. J Agr Food Chem 54, 7098-7104.
    Chou, H.H., Chang, S.W., Lee, G.C., Chen, Y.S., Yeh, T.N., Akoh, C.C., Shaw, J.F., 2010. Site-directed mutagenesis improves the thermostability of a recombinant Picrophilus torridus trehalose synthase and efficiency for the production of trehalose from sweet potato starch. Food Chem 119, 1017-1022.
    Colaco, C., Sen, S., Thangavelu, M., Pinder, S., Roser, B., 1992. Extraordinary stability of enzymes dried in trehalose - simplified molecular-biology. Bio-Technol 10, 1007-1011.
    Connell, L.W., Sexton, F.W., McDaniel, P.J., Prinja, A.K., 1996. Modeling the heavy ion cross-section for single event upset with track structure effects: The HIC-UP-TS model. Ieee T Nucl Sci 43, 2814-2819.
    Crowe, J.H., Crowe, L.M., 2000. Preservation of mammalian cells - learning nature's tricks. Nat Biotechnol 18, 145-146.
    DeLano, W.L., Lam, J.W., 2005. PyMOL: A communications tool for computational models. Abstr Pap Am Chem S 230, U1371-U1372.
    Donnamaria, M.C., Howard, E.I., Grigera, J.R., 1994. Interaction of water with alpha,alpha-trehalose in solution - molecular-dynamics simulation approach. J Chem Soc Faraday T 90, 2731-2735.
    Elbein, A.D., Pan, Y.T., Pastuszak, I., Carroll, D., 2003. New insights on trehalose: a multifunctional molecule. Glycobiology 13, 17r-27r.
    Eroglu, A., Russo, M.J., Bieganski, R., Fowler, A., Cheley, S., Bayley, H., Toner, M., 2000. Intracellular trehalose improves the survival of cryopreserved mammalian cells. Nat Biotechnol 18, 163-167.
    Giannesi, G.C., Polizeli, M.D.T.D., Terenzi, H.F., Jorge, J.A., 2006. A novel alpha-glucosidase from Chaetomium thermophilum var. coprophilum that converts maltose into trehalose: Purification and partial characterisation of the enzyme. Process Biochem 41, 1729-1735.
    Hamerli, D., Birch, R.G., 2011. Transgenic expression of trehalulose synthase results in high concentrations of the sucrose isomer trehalulose in mature stems of field-grown sugarcane. Plant Biotechnol J 9, 32-37.
    Han, S.E., Kwon, H.B., Lee, S.B., Yi, B.Y., Murayama, I., Kitamoto, Y., Byun, M.O., 2003. Cloning and characterization of a gene encoding trehalose phosphorylase (TP) from Pleurotus sajor-caju. Protein Expres Purif 30, 194-202.
    Hengherr, S., Heyer, A.G., Kohler, H.R., Schill, R.O., 2008. Trehalose and anhydrobiosis in tardigrades - evidence for divergence in responses to dehydration. Febs J 275, 281-288.
    Higashiyama, T., 2002. Novel functions and applications of trehalose. Pure Appl Chem 74, 1263-1269.
    Hounsa, C.G., Brandt, E.V., Thevelein, J., Hohmann, S., Prior, B.A., 1998. Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Microbiol-Uk 144, 671-680.
    Iturriaga, G., Suarez, R., Nova-Franco, B., 2009. Trehalose metabolism: from osmoprotection to signaling. Int J Mol Sci 10, 3793-3810.
    Iwaya-Inoue, M., Takata, M., 2001. Trehalose plus chloramphenicol prolong the vase life of tulip flowers. Hortscience 36, 946-950.
    Jin, L.Q., Xue, Y.P., Zheng, Y.G., Shen, Y.C., 2006. Production of trehalase inhibitor validoxylamine A using acid-catalyzed hydrolysis of validamycin A. Catal Commun 7, 157-161.
    Kaasen, I., Mcdougall, J., Strom, A.R., 1994. Analysis of the otsba operon for osmoregulatory trehalose synthesis in escherichia-coli and homology of the Otsa and Otsb Proteins to the yeast trehalose-6-phosphate synthase phosphatase Complex. Gene 145, 9-15.
    Katsuno, M., Adachi, H., Sobue, G., 2004. Sweet relief for Huntington disease. Nat Med 10, 123-124.
    Kidd, G., Devorak, J., 1994. Trehalose is a sweet target for agbiotech. Bio-Technol 12, 1328-1329.
    Koh, S., Kim, J., Shin, H.J., Lee, D., Bae, J., Kim, D., Lee, D.S., 2003. Mechanistic study of the intramolecular conversion of maltose to trehalose by Thermus caldophilus GK24 trehalose synthase. Carbohyd Res 338, 1339-1343.
    Kretz, K.A., Richardson, T.H., Gray, K.A., Robertson, D.E., Tan, X.Q., Short, J.M., 2004. Gene site saturation mutagenesis: A comprehensive mutagenesis approach. Method Enzymol 388, 3-11.
    Kyosseva, S.V., Kyossev, Z.N., Elbein, A.D., 1995. Inhibitors of pig-kidney trehalase. Arch Biochem Biophys 316, 821-826.
    Lee, H.C., Kim, J.H., Kim, S.Y., Lee, J.K., 2008. Isomaltose production by modification of the fructose-binding site on the basis of the predicted structure of sucrose isomerase from "Protaminobacter rubrum". Appl Environ Microb 74, 5183-5194.
    Lee, J.H., Lee, K.H., Kim, C.G., Lee, S.Y., Kim, G.J., Park, Y.H., Chung, S.O., 2005. Cloning and expression of a trehalose synthase from Pseudomonas stutzeri CJ38 in Escherichia coli for the production of trehalose. Appl Microbiol Biot 68, 213-219.
    Leyman, B., Avonce, N., Ramon, M., Van Dijck, P., Iturriaga, G., Thevelein, J.M., 2006. Trehalose-6-phosphate synthase as an intrinsic selection marker for plant transformation. J Biotechnol 121, 309-317.
    Li, K.B., 2003. ClustalW-MPI: ClustalW analysis using distributed and parallel computing. Bioinformatics 19, 1585-1586.
    Maruta, K., Mitsuzumi, H., Nakada, T., Kubota, M., Chaen, H., Fukuda, S., Sugimoto, T., Kurimoto, M., 1996. Cloning and sequencing of a cluster of genes encoding novel enzymes of trehalose biosynthesis from thermophilic archaebacterium Sulfolobus acidocaldarius. Bba-Gen Subjects 1291, 177-181.
    Nishimoto, T., Nakada, T., Chaen, H., Fukuda, S., Sugimoto, T., Kurimoto, M., Tsujisaka, Y., 1996a. Purification and characterization of a thermostable trehalose synthase from Thermus aquaticus. Biosci Biotech Bioch 60, 835-839.
    Nishimoto, T., Nakano, M., Ikegami, S., Chaen, H., Fukuda, S., Sugimoto, T., Kurimoto, M., Tsujisaka, Y., 1995. Existence of a novel enzyme converting maltose into trehalose. Biosci Biotech Bioch 59, 2189-2190.
    Nishimoto, T., Nakano, M., Nakada, T., Chaen, H., Fukuda, S., Sugimoto, T., Kurimoto, M., Tsujisaka, Y., 1996b. Purification and properties of a novel enzyme, trehalose synthase, from Pimelobacter sp R48. Biosci Biotech Bioch 60, 640-644.
    Pan, Y.T., Edavana, V.K., Jourdian, W.J., Edmondson, R., Carroll, J.D., Pastuszak, I., Elbein, A.D., 2004. Trehalose synthase of Mycobacterium smegmatis - Purification, cloning, expression, and properties of the enzyme. Eur J Biochem 271, 4259-4269.
    Paul, M.J., Primavesi, L.F., Jhurreea, D., Zhang, Y.H., 2008. Trehalose metabolism and signaling. Annu Rev Plant Biol 59, 417-441.
    Ravaud, S., Robert, X., Watzlawick, H., Haser, R., Mattes, R., Aghajari, N., 2007. Trehalulose synthase native and carbohydrate complexed structures provide insights into sucrose isomerization. J Biol Chem 282, 28126-28136.
    Ravaud, S., Robert, X., Watzlawick, H., Haser, R., Mattes, R., Aghajari, N., 2009. Structural determinants of product specificity of sucrose isomerases. Febs Lett 583, 1964-1968.
    Richards, A.B., Krakowka, S., Dexter, L.B., Schmid, H., Wolterbeek, A.P.M., Waalkens-Berendsen, D.H., Shigoyuki, A., Kurimoto, M., 2002. Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food Chem Toxicol 40, 871-898.
    Roser, B., Colaco, C., 1993. A Sweeter Way to Fresher Food. New Sci 138, 24-28.
    Rubingh, D.N., 1997. Protein engineering from a bioindustrial point of view. Curr Opin Biotech 8, 417-422.
    Ryu, S.I., Park, C.S., Cha, J., Woo, E.J., Lee, S.B., 2005. A novel trehalose-synthesizing glycosyltransferase from Pyrococcus horikoshii: Molecular cloning and characterization. Biochem Bioph Res Co 329, 429-436.
    Schwede, T., Kopp, J., Guex, N., Peitsch, M.C., 2003. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31, 3381-3385.
    Singh, V.K., Mangalam, A.K., Dwivedi, S., Naik, S., 1998. Primer premier: Program for design of degenerate primers from a protein sequence. Biotechniques 24, 318-319.
    Thomsen, R., Christensen, M.H., 2006. MolDock: A new technique for high-accuracy molecular docking. J Med Chem 49, 3315-3321.
    Veronese, T., Perlot, P., 1998. Proposition for the biochemical mechanism occurring in the sucrose isomerase active site. Febs Lett 441, 348-352.
    Wang, J.H., Tsai, M.Y., Chen, J.J., Lee, G.C., Shaw, J.F., 2007. Role of the C-terminal domain of Thermus thermophilus trehalose synthase in the thermophilicity, thermostability, and efficient production of trehalose. J Agr Food Chem 55, 3435-3443.
    Wang, S.B., Li, A.H.T., Chao, S.D., 2012. Liquid properties of dimethyl ether from molecular dynamics simulations using ab initio force fields. J Comput Chem 33, 998-1003.
    Wei, Y.T., Zhu, Q.X., Luo, Z.F., Lui, F.S., Chen, F.Z., Wang, Q.Y., Huang, K., Meng, J.Z., Wang, R., Huang, R.B., 2004. Cloning, expression and identification of a new trehalose synthase gene from Thermobifida fusca genome. Acta Bioch Bioph Sin 36, 477-484.
    Yang, Y.D., Faraggi, E., Zhao, H.Y., Zhou, Y.Q., 2011. Improving protein fold recognition and template-based modeling by employing probabilistic-based matching between predicted one-dimensional structural properties of query and corresponding native properties of templates. Bioinformatics 27, 2076-2082.
    Zhang, D.H., Li, N., Lok, S.M., Zhang, L.H., Swaminathan, K., 2003a. Isomaltulose synthase (PalI) of Klebsiella sp LX3 - Crystal structure and implication of mechanism. J Biol Chem 278, 35428-35434.
    Zhang, D.H., Li, N., Swaminathan, K., Zhang, L.H., 2003b. A motif rich in charged residues determines product specificity in isomaltulose synthase. Febs Lett 534, 151-155.
    Zhu, Y.M., Wei, D.S., Zhang, J., Wang, Y.F., Xu, H.Y., Xing, L.J., Li, M.C., 2010. Overexpression and characterization of a thermostable trehalose synthase from Meiothermus ruber. Extremophiles 14, 1-8.
    Zhu, Y.M., Zhang, J., Xing, L.J., Li, M.C., 2009. Progress on molecular biology of trehalose synthase - A review. Wei Sheng Wu Xue Bao 4;49(1):6-12.

    下載圖示
    QR CODE