研究生: |
邱瑾禎 |
---|---|
論文名稱: |
非鏡像環氧化反應之探討 |
指導教授: |
陳焜銘
Chen, Kwun-Min |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 183 |
中文關鍵詞: | 環氧化反應 、環氧官能基 、即做即用 、對掌輔助劑 |
英文關鍵詞: | epoxidation, epoxide, in situ, chiral auxiliary, Dioxirane |
論文種類: | 學術論文 |
相關次數: | 點閱:198 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
環氧官能基在有機合成扮演重要角色上,由於三環結構的環張力大,容易受親核性試劑攻擊而開環,建立不同官能基架構的產物,所以在有機合成領域中備受化學家的重視。在藥物分子中,環氧基也扮演重要角色,如文章所提到,Troptolide 1的結構中具有多個環氧官能基,且被證實對於抑制淋巴球異常增值(抗腫瘤)具有療效,除此之外,Val-Pro的雙醇雙胺似構物(Diaminodiol Dipeptide Isostere)72,亦為抗逆轉濾過性病毒(愛滋病)的藥物,此類藥物雖無環氧基的結構,但在合成過程中也與環氧基的合成有關。日常生活中,大部分具有芳香族的食物、藥物會受到肝臟酵素的氧化而形成帶有環氧基的中間體,進行重排、水解等過程,使藥物由脂溶性轉變成水溶性,易於從人體內排除。由此可知,環氧官能基在化學與相關領域皆有舉足輕重的地位。
本研究旨在以樟腦分子為架構的對掌輔助劑96和98,接上不同取代之α,β-不飽和酯基,進行不對稱的環氧化反應。利用所合成出的對掌α,β-不飽和酯基分別與mCPBA、UHP/TFAA 及Dioxirane三種親核性氧化試劑進行反應,探討其反應的差異性,研究發現以Dioxirane為氧化劑的反應性及選擇性最佳。文獻指出Dioxirane的製備方式,分成「即做即用」(in situ)和「製備-分離」使用(isolatable)兩種,前者雖然克服了製備及保存上的困難,但本研究發現以「製備-分離」methyl(trifluouomethyl)dioxirane 的方式進行反應,可提升產率及立體選擇性,成為此氧化反應的最佳條件。若以「即做即用」Dioxirane的方式進行反應,在β碳上帶兩個甲基取代的對掌α,β-不飽和酯基100,反應產率可達82%,其非鏡像選擇性亦可達90%以上。以「製備-分離」Dioxirane 方式,進行環氧化反應,產率可提升至96%,非鏡像選擇性更可達94%以上,採用另一對掌輔助劑也可達到不錯的結果。實驗室成功的利用新合成的兩種對掌輔助劑,其所製備出之對掌α,β-不飽和酯基來進行環氧化反應,所得之高產率及高選擇性結果,期望在有機不對稱合成領域中有更廣泛的應用。
In organic synthesis, epoxide is an important building block. Because the structure is so unstable that it was easily attracted by nucleophiles to generate new functional groups. It may be found in many medicines. For example, Troptolide 1 include this kind of group, and it is now recognized as potential agents for the treatment of antitumor.
Two new chiral auxiliary 96 and 98 can be easiliy prepared from the (R)-(+)-camphorsulfornic acid 91 in five steps in a total 85% yield. In our study, asymmetric epoxidation of chiral auxiliary 96 and 98 derivedα,β-unsatudrated ester 99-107,108 and 109 was examined by using oxidants. Various electrophilic oxidants such as mCPBA、UHP/TFAA and Dioxirane were used to probe their difference in the reactive ability and stereoinduction. It was found that Dioxirane is an excellent oxidant with these nucleophilic substrate. Excellent yield and good diasteroselective were obtained. Dioxirane was used prepared by two different means-in situ generation and generated-used protocol. Although the former way overcome the difficulty of preparation and reservation. By our inverstigation find that the later way can eliminate many factors to create nice yield and excellent diastereoselective.
Epoxidation of chiralα,β-unsaturated ester derives 100 get good yield(82%)and diasteroselective(>90% de)by in situ reaction. By another way, it can get yield(96%)and diasteroselective(>94% de)more better. The absolute stereochemistry of the newly generathe epoxy ring(major product 111a)was determined to be a (1R)-configuration by single crystal X-ray analysis.
1. Yang, D.; Ye, X. Y.; Xu, M.; Pang, K. W.; Ning, Z.; Letcher, R. M. J. Am. Chem. Soc. 1998, 120, 6446.
2. 曾誠齊教授. 實用藥物化學.高明圖書事業有限公司. 2000.
3. Gringauz, A. in Introduction to Medicinal Chemistry Willey-VCH, 1st Edition 1997.
4. Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974.
5. Prileschajevs, N.; Ber. 1909, 42, 4811.
6. Sharpless, K. B. et al. J. Am. Chem. Soc. 1980, 102, 5974.
7. Katsuki, T. in Comprehensive Asymmetric Catalysis; Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. Springer-Verlag: Heidelberg, 1999, Vol. II, pp 621-648.
8. (a)Wang, Z. X.; Tu, Y.; Shi, Y. J. Am. Chem. Soc. 1996, 118, 9806. (b)Wang, Z. X.; Tu, Y.; Frohn, M.; Shi, Y. J. Org. Chem. 1997, 62, 2328.
9. Julia, S.; Masana, J.; Vega, J. C. Angew. Chem., Int. Ed. Engl. 1980, 19, 929.
10. Nemoto, T.; Ohshima, T.; Shibasaki, M. J. Am. Chem. Soc. 2001, 123, 9474.
11. Ender, D.; Zhu, J.; Raabe, G.. Angew. Chem., Int. Ed. Engl. 1996, 35, 1725.
12. Elston, C. L.; Jackson, R. F. W.; Macdonald, S. J. F.; Murray, P. J. Angew. Chem., Int. Ed. Engl. 1997, 36, 410.
13. (a)Rossiter, B. E.;Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1981, 103, 464. (b)Martin, V. S.; Woodard, S. S.; Katsuki, T.; Yamada, T; Ikeda, M.; Sharpless, K. B. J. Am. Chem. Soc. 1981, 103, 6237.
14. Rossiter, B. E.; Sharpless, K. B. J. Org. Chem. 1984, 49, 3707.
15. Julia, S.; Guixer, J.; Rocas, S.; Masana, J.; Colonna, S.; Annuziata, R.; Molinari, H. J. Chem. Soc., Perkin Trans. 1 1982, 1317.
16. (a)Sanchez, M. E. L.; Roberts, S. M. J. Chem. Soc., Perkin Trans. 1 1995, 1467. (b)Flood, R. W.; Geller, T. P.; Petty, S. A.; Roberts, S. M.; Skidmore, J.; Volk, M. Org. Lett. 2001, 3, 683. (c)Dhanda, A.; Drauz, K. H.; Geller, T. P.; Roberts, S. M. Chirality. 2000.
17. (a)Zhang, W.; Loebach, J. L.; Wilson, S. R.; Jacobsen, E. N. J. Am. Chem. Soc. 1990, 112, 2801. (b)Zhang, W.; Jacobsen, E. N. J. Org. Chem. 1991, 56, 2296. (c)Irie, R.; Ito, Y.; Katsuki, T. Tetrahedron Lett. 1991, 32, 6891.
18. Chang, S.; Galvin, J. M.; Jacobsen, E. N. J. Am. Chem. Soc. 1994, 113, 6937.
19. Jacobsen, E. N. Zhang, W.; Muci, A. R; Ecker, J. R. Deng, L. J. Am. Chem. Soc. 1991, 113, 7063.
20. (a)Murray, R. W.; Jeyaraman, R. J. Org. Chem. 1985, 50, 2847. (b)Mello, R.; Fiorentino, M.; Sciacovelli, O.; Curci, R. J. Org. Chem. 1988, 53, 3891. (c)Adam, W.; Curci, R.; Edwards, J. O. Acc. Chem. Res. 1989, 22, 205. (d)Murrary, R. W. Chem. Rev. 1989, 89, 1187.
21. Edwards, J. O.; Peter, R. H.; Curci, R.; DiFuria, F. Photochem. Photobiol. 1979, 30, 63.
22. Curci, R.; Fioretino, M.; Troisi, L. J. Org. Chem. 1980, 45, 4758.
23. Davis, F. A.; Chattopadhyay, S. Tetrahedron Lett. 1986, 27, 5079.
24. Curci, R.; Acclti, L.; Fioretino, M.; Rosa, A. Tetrahedron Lett. 1995, 36, 5831.
25. Yang, D.; Yip, Y. C.; Wong, M. W.; Wong, M. K.; Zheng, J. H.; Cheung, K. K. J. Am. Chem. Soc. 1996, 118, 491.
26. Tian, H.; She, X.; Xu, J.; Shi, Y. Org. Lett. 2001, 3, 1929.
27. Yang, D.; Wong, M. K.; Yip, Y. C. J. Org. Chem. 1995, 60, 3887.
28. Rickborn, B.; Murphy, D. K. J. Org. Chem. 1969, 34, 3209.
29. Parker, R. E.; Isaacs, N. S. Chem. Rev. 1959, 59, 737.
30. Moberg, C.; Rakos, L.; Tottie, L. Tetrahedron Lett. 1992, 33, 2191.
31. Sharpless, K. B.; Lauer, R. F. J. Am. Chem. Soc. 1973, 95, 2697.
32. Yamaguchi, T.; Harada, N.; Kunihiko, O.; Hashiyama, T. Org. Lett. 1998, 39, 5575.
33. Flisak, J. R.; Gombatz, K. J.; Holmes, M. M.; Jarmas, A. A.; Lantos, I.; Mendelson, W. L.; Novack, V. J.; Remich, J. J.; Snyder, L. J. Org. Chem. 1993, 58, 6247.
34. Benedetti, F.; Berti, F.; Dinon, F.; Nardin, G.; Norbedo, S. Org. Lett. 2004, 6, 1017.
35. Wu, X. Y.; She, X.; Shi, Y. J. Am. Chem. Soc. 2002, 124, 8792.
36. Wong, M. K.; Ho, L. M.; Zheng, Y. S.; Ho, C. Y.; Yang, D. Org. Lett. 2001, 3, 2587.
37. Adam, W.; Schambony, S. B. Org. Lett. 2001, 3, 79.
38. Adam, W.; Pastor, A.; Peters, K.; Peters, E. M. Org. Lett. 2000, 2, 1019.