簡易檢索 / 詳目顯示

研究生: 林紘瑋
Lin, Hung-Wei
論文名稱: 使用銀化微管陣列薄膜以提高表面增強拉曼散射光譜的增強因子
Improvement of the Enhancement Factor in SERS with Silver-MTAMs
指導教授: 林震煌
Lin, Cheng-Huang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 90
中文關鍵詞: 銀鏡反應微管陣列薄膜表面增強拉曼散射
英文關鍵詞: silver mirror reaction, microtube array membranes, Surface-Enhanced Raman Scattering
DOI URL: https://doi.org/10.6345/NTNU202204412
論文種類: 學術論文
相關次數: 點閱:250下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用靜電紡絲法製造微管陣列薄膜,並將薄膜利用銀鏡反應法製作成表面增強拉曼散射基材。聚乳酸為微管陣列薄膜的主成分,製作薄膜時,電壓為5 kV、紡嘴至收集器距離3 cm、滾筒轉速100 rpm、內管流速4 ml/h、外管流速4.5 ml/h,濕度50 %,環境溫度25℃是為最佳條件。薄膜表面的銀鏡反應是先以氨水洗淨並潤濕薄膜,接著再配置等體積的0.3 M葡萄糖水溶液、1.68 %氨水、0.05 M硝酸銀水溶液並混合,最後再將薄膜浸泡於混合溶液中,並以55℃水浴環境下反應12分鐘即可。此方法能夠使銀奈米粒子均勻的分佈於薄膜的表面。薄膜上的銀奈米粒子大小約為80 nm,在雷射光源的激發下,會引發誘導耦合電漿共振。本研究利用對胺基苯硫酚作為偵測的藥品,增強因子是用對胺基苯硫酚上的碳-硫鍵訊號變化作為計算,當銀奈米粒子和對胺基苯硫酚的硫原子形成共價鍵結後,碳-硫鍵的鍵能會因此降低訊號,經雷射光源照射後,碳-硫鍵的1088 cm-1 (拉曼訊號)會偏移至1070 cm-1 (表面增強拉曼散射訊號)且訊號會增強,由結果得到此銀化薄膜的增強因子達到10¬4倍,且偵測極限為10 ppb。

    A series of MTAMs (microtube array membranes) were produced by the electrospinning method. After this, a piece of MTAM was used for making a SERS (Surface-Enhanced Raman Scattering) substrate by means of silver mirror reaction. Poly-L-lactic acid solution was selected as making material. The optimal conditions, including applied voltage, the distance between ejector and collector, speed of the drum, flow rate of inner/outer tube, humidity and temperature, were 5 kV, 3cm, the 100 rpm, 4/6 ml/h, 50 %, 25 ℃, respectively. On the other hand, the silver mirror reaction took place to produce colloidal silver at the surface of MTAMs. In the beginning, MTAMs were cleaned up and wetted by ammonia hydroxide. Following this, a mixing solution (v/v/v; 1/1/1) was prepared by using 0.3 M aqueous solution of glucose, 1.68 % ammonia hydroxide and 0.05 M aqueous solution of silver nitrate. Finally, the MTAMs were put into the mixed solution for occurring silver mirror reaction, in which the temperature of water bath and reaction time were set at 55 ℃ and 12 minutes, respectively. As the result, the nano-silver particles can be uniformly deposited on the surface of the MTAMs, leading to make silver-MTAMs. The sizes of the nano-silver particles on MTAMs were about 80 nm, which size was useful to induce a surface plasma resonance when a laser was used. In order to evaluate the performance of the silver-MTAMs, p-ATP (p-aminothiophenol) was selected as the test sample. The findings show that the use of silver-MTAMs a SERS enhancement factor of 104-fold was achieved; the limit detection was found to 10 ppb. It can be seen that a covalent bond might be formed between the Sulfur atom and the nano-silver particles, and as the result, the energy of C-S bond was decreased, since the energy of a C-S bond was decreased from 1088 cm-1 (Raman signal) to 1070 cm-1 (SERS signal). Based on this signal, an enhancement factor was 1.17×104.

    中文摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1-1研究目的 1 1-2分析物簡介 2 第二章 分析方法及原理 3 2-1 拉曼散射 3 2-1-1 拉曼散射歷史簡介 3 2-1-2 拉曼散射原理介紹 5 2-2 表面增強拉曼散射 9 2-2-1 表面增強拉曼散射歷史簡介 9 2-2-2 表面增強拉曼散射原理介紹 10 2-3 靜電紡絲法 14 2-3-1 靜電紡絲簡介 14 2-3-2 靜電紡絲原理介紹 15 2-3-3 靜電紡絲參數 17 2-3-4 同軸靜電紡絲 18 2-4 銀鏡反應原理介紹 21 第三章 儀器與藥品 22 3-1拉曼光譜儀 22 3-2自組式靜電紡絲裝置 25 3-3使用藥品列表 26 3-4使用設備列表 28 第四章 研究過程與討論 29 4-1 微管陣列薄膜製作 29 4-2 銀鏡反應調控 31 4-2-1 微管陣列薄膜之銀鏡反應步驟 31 4-2-2 氨水洗淨對銀鏡反應的影響 32 4-2-3 溫度與時間的控制對銀鏡反應的影響 34 4-2-4硝酸銀濃度對銀鏡反應的影響 39 4-3 最佳化薄膜鍍銀方法 41 4-4 增強因子計算 45 4-5 p-ATP的分子振動模式 48 4-6 偵測極限 51 第五章 結論 52 參考文獻 55 附錄一 59

    [1] PJ. Yunker, T. Still, MA. Lohr, AG. Yodh. Nature. 2011, 476. 308-11
    [2] L. B. Zhao, Y. F. Huang, D. Y. Wu, R. Ren, Acta Chim. Sinica, 2014, 72, 1125-1138
    [3] R. Dasari, F. P. Zamborini, Anal. Chem. 2016, 88, 675-681
    [4] R. L. McCreery. Raman Spectroscopy for chemical analysis, New York: Wiley Interscience. 2000.
    [5] S. Nie, S. R. Emony, Science 1997, 275.
    [6] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, S. F. Michael, Phys. Rev. Letter. 1997, 78, 9.
    [7] Y. Maruyama, M. Ishikawa, M. Futamata, Anal. Sci. 2001, 17.
    [8] J. Kneipp, H. Kneipp, M. McLaughlin, D. Brown, K. Kneipp,. Nano Lett. Vol. 6, No. 10, 2006.
    [9] K. Kneipp, J. Phys: Condens. Matter. 14, 2002, R597-R264 Pll.
    [10] High Resolution UV Echelle Spectroscopy for Environmental Sensing, Proc. SPIE, 2002, Vol. 5269, 34
    [11] Surface-Enhanced Raman for Monitoring Toxins in Water, Proc. SPIE, 2004, Vol. 5268, 340.
    [12] J. Kneipp, H. Kneipp, B. Wittig, K. Kneipp, Nano Lett. Vol. 7, No. 9, 2007
    [13] V. Dinh, T. Trends, Analytical Chemical, 1998, 17, 557.
    [14] T. Tu. Anthony, Raman Spectroscopy in Biology Principles and Applicarions, John Wiley & Sons, Inc.
    [15] 李冠卿,物理雙週刊,1983,第五卷,第四期,185.
    [16] E. S. Brandt, T. M. Cotton, B. W. Rossiter, R. C. Baetzold, Z. K. Shihabi J. Chromatogr. 2000, 902, 107.
    [17] A. Campion, P. Kambhampati, Chem. Soc. Rev. 1998, 27, 241.
    [18] R. K. Chang, T. E. Furtak, Surface Enhanced Raman Scattering; Plenum Press: New York, 1982.
    [19] L. He, M. J. Natan, C. D. Keating, Anal. Chem. 2000, 72, 5348.
    [20] R. J. Dijkstra, A. Gerssen, E. V. Efremov, F. Ariese, U. A. T. Brinkman, C. Gooijer, Anal. Chim. Acta. 2004, 508, 127.
    [21] R. M. Seifar, R. J. Dijkstra, A. Gerssen, F. Ariese, U. A. T. Brinkman, C. Gooijer, J. Sep. Sci. 2002, 25, 814.
    [22] J. A. Creighton, C. G. Blatchford, M. G. Albecht, J. A. Soc., Faraday Trans. 2, 1980, 75, 790.
    [23] K. Faulds, R. E. Littleford, D. Graham, G. Dent, W. E. Smith, Anal. Chem. 2004, 76, 592.
    [24] L. He, M. J. Natan, C. D. Keating, Anal. Chem. 2000, 72, 5348.
    [25] W. F. Nirode, G. L. Devault, M. J. Sepaniak, Anal. Chem. 2000, 72, 1866.
    [26] K. Kneipp, Single Mol. 2001, 4, 291.
    [27] M. Futamata, Y. Maruyama, M. Ishikawa, Vibrational Spectroscopy, 2004, 35, 121.
    [28] Y. F. Huang, H. P. Zhu, G. K. Liu, D. Y. Wu, B. Ren, Z. Q. Tian, J. AM. CHEM. SOC. 2010, 132, 9244–9246.
    [29] A. Campion, P. Kambhampati, Chem. Soc. Rev. 1998, 27, 241-250
    [30] J. R. Lombardi, R. L. Birke, T. Lu, J. Xu, J. Chem. Phys. 1986, 84, 4174
    [31] A. Otto, J. Raman Spectrosc. 2005, 36, 497-509.
    [32] J. Turkevich, G. Kim, Science, 1970, 169, pp.873.
    [33] 顧克壯等學者, 靜電紡絲技術及其應用化學世界 2005 ,第5期, 313
    [34] C. J. Buchko, Polymer, 1999, 40, 7397
    [35] R. D. Espy, S. F. Teunissen, N. E. Manicke, Y. Ren, Z. Ouyang, A. V. Asten, R. G. Cooks, Anal. Chem. 2014, 86, 7712.
    [36] R. B. Cody, A. J. Dane, Rapid Commun. Mass Spectrom., 2014, 28, 893.
    [37] M. G. Ikonomou, A. T. Blades, P. Kebarle, Anal. Chem. 1991, 63, 1989.
    [38] A. Gomez, K. Tang, Phys. Fluid. 1994, 65, 404.
    [39] 孫良奎, 程海峰, 楚增勇, 熱加工工藝技術與材料研究, 7, 83, 2008.
    [40] D. J. W. Dressings. Prof Nurse. 1997,12, 2
    [41] M. Rothe, V. Falanga, Arch Dermatol. 1989, 125, 1390-8
    [42] S. K. Purna, M. Burns. 2000, 26, 54
    [43] J. C. Yang, S. Y. Lee, W. C. Tseng, Y. C. Shu, J. C. Lu, H. S. Shie, C. C. Chen, Macromol. Mater. Eng. 2011, 297, 115
    [44] E. Wallis, T. M. Griffin, N. Popkie, Jr. M. A. Eagan, R. F. MacAtee, D. Vrazel, J. McKinly, Proc. SPIE-Int. Soc. Opt. Eng. 2005, 5795, 54.
    [45] J. T. McCann, D. Li, Y. Xia, J. Mater. Chem. 2005, 15, 735.
    [46] S. Sakuldao, T. Yoovidhya, S. Wongsasulak, Science Asia. 2011, 37, 335.
    [47] F. Z. Md, L. Wang, G. Guan, K. Farzana, J. Bioeng. Biomed. Sci. 2013, 3, 6.
    [48] Y. S. Huang, C. C. Kuo, Y. C. Shu, S. C. Jang, W. C. Tsen, F. S. Chuang, C. C. Chen, Macromol. Chem. Phys. 2014, 215, 879.
    [49] J. C. Yang, S. Y. Lee, W. C. Tseng, Y. C. Shu, J. C. Lu, H. S. Shie, C. C. Chen, Macromol. Mater. Eng. 2012, 297, 115.
    [50] A. V. Bazilevsky, A. L. Yarin, C. M. Megaridis, Langmuir, 2007, 23, 2311.
    [51] H. Wu, L. Hu, M. W. Rowell, D. Kong, J. J. Cha, J. R. McDonough, J. Zhu, Y. Yang, M. D. McGehee, Y. Cui, Nano Lett. 2010, 10, 4242.
    [52] H. Qu, S. Wei, Z. Guo, J. Mater. Chem. 2013, A1, 11513.
    [53] C. S. Jhang, H. Lee, Y. S. He, J. T. Liu, C.H. Lin, Electrophoresis. 2012, 33, 1.
    [54] H. Lee, C. S. Jhang, J. T. Liu, C. H. Lin, J. Sep. Sci. 2012, 35, 2822.
    [55] Z. M. Huang, Y. Z. Zhang, M. Kotaki, S. Ramakriskna, Compos. Sci. Technol. 2003, 63, 2223.
    [56] M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart, A. Greiner, J. H. Wendorff, Adv. Mater. 2001, 13, 70.
    [57] K. L. Ou, C. S. Chen, L. H. Lin, J. C. Lu, Y. C. Shu, W. C. Tseng, J. C. Yang, S. Y. Lee, C. C. Chen, Eur. Polym. J. 2011, 47, 882.
    [58] Y. M. Jung, H. Sato, T. Ikeda, H. Tashiro, Y. Ozaki, Spectrochim. Acta Part A. 2004, 60, (8-9), 1941-1945.
    [59] L. T. Qu, L. M. Dai, J. Phys. Chem. B 2005, 109, (29), 13985-13990.
    [60] M. L. Cheng, J. Yang, Applied Spectrosc. 2008, 62, (12), 1384-1394.
    [61] Y. Saito, J. J. Wang, D. A. Smith, D. N. Batchelder, Langmuir, 2002, 18, (8), 2959-2961.
    [62] Laserna, J. J.; Campiglia, A. D.; Winefordner, J. D., Anal. Chim. Acta 1988, 208, 21-30.
    [63] A. S. L. Lee, Y. S. Li, J. Raman Spectrosc. 1994, 25, (3), 209-214.
    [64] E. C. Le Ru , E. Blackie , M. Meyer , P. G. Etchegoin, J. Phys. Chem. C 2007, 111, (37), pp 13794–13803
    [65] Y. F. Huang, D. Y. Wu, H. P. Zhu, L. B. Zhao, G. K. Liu, B. Ren, Z. Q. Tian Phys. Chem. Chem. Phys. 2012, 14, 8485-8497
    [66] Lenka Škantárová, Andrej Oriňák, Renáta Oriňáková, František Lofaj Nano-Micro Lett. 2012, 4, (3), 184-188
    [67] O. Masatoshi, M. Naoki, Y. Katsumasa, U. Isamu, J. Phys. Chem. 1994, 98, 12702-12707
    [68] A. Tripathi, E. D. Emmmons, S. D. Christesen, A. W. Fountain, J. A. Guicheteau, J. Phys. Chem. C 2013, 117, 22834−22842
    [69] A. Gopalakrishnan, M. Chirumamilla, F. D. Angelis, A. Toma, R. P. Zaccaria, R. Krahne, ACS Nano 2014, 8, 8, 7986–7994
    [70] S. Y. Chou, C. C. Yu, Y. T. Yen, K. T. Lin, H. L. Chen, W. F. Su, Anal. Chem. 2015, 87, 6017−6024

    下載圖示
    QR CODE