研究生: |
陳智宇 |
---|---|
論文名稱: |
單晶及異質接面太陽能電池試製與模擬 Monocrystalline and Heterojunction Solar Cell Fabrication and Simulation |
指導教授: | 李敏鴻 |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 58 |
中文關鍵詞: | 新型異質接面太陽能電池 、基板電壓 、電子束蒸鍍 |
英文關鍵詞: | HIT solar cell, base voltage, E-gun evaporation |
論文種類: | 學術論文 |
相關次數: | 點閱:218 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中,藉由本實驗的電子束蒸鍍機製作HIT太陽能電池經過退火製程後獲得了開路電壓320 mV和短路電流2.21 mA/cm2。,但此設備具有電漿損傷和成本昂貴的缺點。,跟電子束蒸鍍相較之下不會有電漿損傷的顧慮且設備便宜許多,對未來要以製程設備降低成本方向來看電子束蒸鍍機是個不錯的選擇。
此外,本實驗室利用Silvaco TCAD模擬建立HIT(hetrojunction with intrinsic thin layer)太陽能電池模組,加入一基極偏壓發現可以大幅增加開路電壓外,短路電流也會增加,隨著基極偏壓的加大,效率也大幅的增加,由效率19.7%增至31.2%,總共增加了50.8%,開路電壓也從690mV曾至890mV,總共增加了29%是個不錯的發現,接著再將厚度減薄,發現電流密度有些微的下降趨勢,從能帶圖、電子電洞濃度都有下降的趨勢,在未來實際用在真實元件透過分析,將材料參數帶入模擬更能確定模擬結構的正確性及可套用到實際應用中。
In this work, the experimental used the electron beam evaporator making HIT solar cell production process after annealing were obtained open circuit voltage 320 mV and short circuit current of 2.21 mA/cm2. However, this device has plasma damage and costly drawbacks. , Compared with the electron beam evaporation there will be no injury concerns and plasma equipment much cheaper, in the future to reduce the cost of process equipment to the direction of view electron beam evaporator is a good choice.
In addition, the laboratory used of Silvaco TCAD simulation to establish HIT (Hetrojunction with Intrinsic Thin layer) solar modules. Adding a base bias can increased open circuit voltage and short circuit current. The efficiency increase 11.5%, open circuit voltage increase 50.8%. An open circuit voltage from 690mV to 890mV enhancement 29% .When followed thickness thinning found that the current density is slightly downward trend, from the energy band diagram, electron and hole concentrations have a downward trend in the future through actual use in the real component analysis. The material parameters into the simulation to better determine the accuracy and can simulate the structure applied to practical applications.
[1] 施敏、伍國珏, “半導體元件物理學(下冊)” 國立交通大學, pp.596-598 2009.
[2] “Solar generation V-2008/Solar electricity for over one billion people and two million jobs by 2020” EPIA, Sep. 2008.
[3] 何孟穎,“2012年太陽光電市場與產業技術發展年鑑”光電科技工業協會,
p.3 2012.
[4] 顧鴻壽,“太陽能電池元件導論”高立圖書出版有限公司。pp.34-39 2009.
[5] 賴冠宇,「微米陣列太陽電池」,國立中央大學,碩士論文,2013.
[6] S. DeWolf, A. Descoeudres, Z.-C. Holman, and C. Ballif, “High-efficiency silicon heterojunction solar cells: A review,” Green, vol. 2, pp. 7–24 2012.
[7] A. Kolodziej “Staebler-Wronski effect in amphous silicon and its alloys” Opto-Electronics Review, vol.12, pp.21–32 2004.
[8] 濱川圭弘, “光電太陽電池設計與應用” 五南圖書出版有限公司, pp.61-65 2009.
[9] M. Tanaka, M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa, Y. Kuwano, “Development of New a-Si/c-Si Heterojunction Solar Cells:ACJ-HIT(Artificially Constructed Junction Heterojunction with Intrinsic Thin-Layer)” Journal of Applied Physics, vol.31, pp. 3518-3522 1992.
[10] M. Taguchi, H. Sakata, Y. Yoshimine, E. Maruyama, Akira Terakawa and Makoto Tanaka, “An approach for the higher efficiency in the HIT cells” Photovoltaic Specialists Conference, pp.866-870 2005.
[11] PV Education.org .
http://pveducation.org/pvcdrom/solar-cell-operation/effect-of-temperature
[12] M. Taguchi, A. Terakawa, E. Maruyama and M. Tanaka, “Obtaining a Higher Voc in HIT Cells” Progress in Photovoltaics :Research and Applcations, vol.13, pp.481–488 2005.
[13] Y. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. Kanno, H. Sakata, E. Maruyama, M. Tanaka, “Twenty-two percent efficiency HIT solar cell”, Solar Energy Materials & Solar Cells,vol.93 pp.670–673 2009.
[14] C.-S. Liu, C.-Y. Wu, I.-W. Chen, H.-C. Lee and L.-S. Hong, “High-rate deposition of a-Si:H thin layers for high-performance silicon heterojunction solar cells” Progress in Photovoltaics :Research andApplca-
tions ,vol.21 pp.326–331 2012.
[15] R. A. Sinton, Tanaya Mankad, Stuart Bowden, and Nicolas Enjalbert, “Evaluating Silicon Blocks and Ingots With Quasi-Steady-State Lifetime Measurements” 19th European Photovoltaic Energy Conference, 2004.
[16] R. Sinton, “Quasi-steady-state photoconductance, a new method for solar cell material and device characterization, ”Proceedings of the 25th IEEE PVSC, pp. 457-460 1996.
[17] Semi.org.
http://www.semi.org/cms/groups/public/documents/web_content
[18] I. Sakata, Mitsuyuki, Yamanaka, H. Kawamnami, “Characterization of hetero-junctions in crystalline-silicon-based solar cells by internal photoemission”, Solar Energy Materials & Solar Cells, vol.93 pp.737–741 2009.
[19] S.-D. Wolf, and M. Kondo, “Nature of doped a-Si:H/c-Si interface recombination”, Journal of Applied Physics, vol.105 103707 2009.
[20] T. Koida, H. Fujiwara, M. Kondo, “High-mobility hydrogen-doped In2O3 transparent conductive oxide for a-Si:H/c-Si hetero-junction solar cells,” Solar Energy Materials & Solar Cells, vol.93 pp.851–854 2009.
[21] H. Fujiwara, T. Kaneko, M. Kondo, “Optimization of interface structures in crystalline silicon hetero-junction solar cells”, Solar Energy Materials & Solar Cells , vol.93 pp.725–728 2009.
[22] T. Koida H. Fujiwara, and M. Kondo, “Reduction of Optical Loss in Hydrogenated Amorphous Silicon/Crystalline Silicon Hetero-junction Solar Cells by High-Mobility Hydrogen-Doped In2O3 Transparent Conductive Oxide”, Appl. Phys. Express, vol.1 p.041501 2008.
[23] H. Sakata, T. Nakai, T. Baba, M. Taguchi, S. Tsuge, K. Uchihashi, and S. Kiyama, “20.7% High efficiency large area(100.5cm2)HITTMcell,” 8th IEEE Photovaltaic Specialists Conference, vol.7 pp.7-12 2000.
[24] L. Zhao, C.-L. Zhou, H. -L. Li, H.- W. Diao, W.- J. Wang “Design optimization of bifacial HIT solar cells on p-type silicon substrates by simulation,” Solar Energy Materials & Solar Cells, vol.92 pp.673–681 2008.
[25] M. Tanaka, M. Taguchi, T. Takahama, T. Sawada, S. Kuroda, T. Matsuyama, S. Tsuda, A. Takeoka, S. Nakano, H. Hanafusa, and Y. Kuwano “Development of a New Hetero-junction Structure (ACJ-HIT) and its Application to Polycrystalline Silicon Solar Cells,” Progress In Photovaltaics Research And Applications vol.1 pp.85-92 1993.
[26] K.- V. Nieuwenhuysen, F. Duerinckx, I. Kuzma, M.-R. Payo, G.Beaucarne, and J. Poortmans “Epitaxially grown emitters for thin film crystalline silicon solar cells,” Thin Solid Films, vol.517 pp.383–384 2008.
[27] I. Gordon, L. Carnel, D. Van Gestel, G. Beaucarne, and J. Poortmans, “8% Efficient Thin-Film Polycrystalline-Silicon Solar Cells Based on Aluminum-Induced Crystallization and Thermal CVD,” Prog. Photovolt: Res. vol.15 pp.575–586 2007.
[28] T. Sawada, N. Terada, S. Tsuge, T. Baba, T. Takahama, K. Wakisaka, S. Tsuda, and S. Nakano,” High efficiency a-Si/c-Si hetero-junction solar cell, ” Conference Record the First WCPEC, Hawai, p. 1219 1994.
[29] C.-H. Tai, C.-H. Lin, C.-M. Wang, and C.-C. Lin, ”Three-Terminal Amorphous Silicon Solar Cells, ” International Journal of Photoenergy, vol. 2011, p. 813093, 2011.
[30] Y. Kuo “Thin film transistors materials and process, ” Kluwer Academic, pp.18-20 2004.