研究生: |
詹侑得 Chan, Yu-Te |
---|---|
論文名稱: |
利用第一原理探討材料表面上二氧化碳電催化還原之特性
I.含氮碳管中類有機金屬結構對於二氧化碳的催化特性及碳管雜化後性質
II.應力效應對材料表面之電子結構及其對二氧化碳電催化還原反應特性之影響 A First-principle Study on the Mechanism of CO2 Electrochemical Reduction Reaction I.CO2 Electrochemical Reduction on TM-N-doped CNT II.Investigating the Role of Strain toward the CO2 Reduction on Cu Catalyst |
指導教授: |
蔡明剛
Tsai, Ming-Kang |
學位類別: |
博士 Doctor |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 97 |
中文關鍵詞: | DFT計算 、二氧化碳還原 、一氧化碳還原 、奈米碳管 、異相催化 、電催化 、應力效應 |
英文關鍵詞: | DFT calculation, CO2 reduction, CO reduction, CNT, Heterogeneous catalysis, Electrochemical catalysis, Strain effect |
DOI URL: | http://doi.org/10.6345/DIS.NTNU.DC.076.2018.B05 |
論文種類: | 學術論文 |
相關次數: | 點閱:195 下載:20 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們使用DFT理論計算探討了二氧化碳還原反應在過度金屬螯合於氮參雜碳管(TM-4N2v-CNT)的特性。為了要模擬平面四方體均相催化劑,在這個模型當中包括了四個氮原子取代及兩個空缺位置,並在其空缺位螯合上Fe, Ru, Os, Co, Rh, Ir, Ni, Pt及Cu。接著使用此結構沿著二氧化碳還原路徑尋找可能存在的中間體。在本篇所有研究的金屬,皆偏向進行水還原(Hydrogen evolution reaction),且只有第八族元素可與CO產生強鍵結,並生成後續還原產物,而其他金屬則偏向生成HCOOH。而我們也以ligand field theory解釋這個中心金屬對於CO鍵結強弱的差異。透過增加電壓去穩定CO中間體,可在中心金屬為Ru及Os時產生甲烷,在中心金屬為Fe時產生甲醇。並且當增加碳管曲率時可減少電催化所需之電壓。然而反應中的主要產物主要還是由中心金屬種類決定。
我們透過DFT理論計算展示了應力效應如何影響銅催化電極對二氧化碳還原反應(CO2RR)的催化選擇性,我們討論了在二氧化碳電催化路徑上幾個關鍵的中間體,例如(_^*)H、(_^*)COOH、(_^*)CO、(_^*)CHO及(_^*)OCCOH,透過在考慮應力效應下前述中間體的相對形成能,我們推測二氧化碳還原反應(CO2RR)產出2C+的路徑將會被推動,其第一步關鍵中間體(_^*)COOH將比競爭反應水還原(HER)的中間體(_^*)H的形成能更增加約0.10 - 0.15eV,同時((_^*)CO→(_^*)CHO )的能障也增加約0.10-0.15eV,同時(_^*)CO的鍵結強度增加,表面上的(_^*)CO濃度因此升高。在適當應力區域,二碳中間體(_^*)OCCOH形成能會增加,並且在特定應力下此幅度大於一碳中間體(_^*)CHO約0.2eV,使得二碳產物的法拉第效率將有所提升。我們也藉由電子結構效應及立體結構效應解釋這些現象可能的原因。在本篇研究中,我們也發現在擠壓的應力下可能存在適於產生3C產物的表面銅原子排列,對後續材料的設計提供參考。
We have characterized the CO2 reduction capabilities of a series of nine transition-metal-chelated nitrogen-substituted carbon nanotube models (TM-4N2v-CNT), using density functional theory. Each of the chelated models consists of a four-N-substituted and one vacancy framework to mimic square planar homogeneous catalysts, and is coordinated to Fe, Ru, Os, Co, Rh, Ir, Ni, Pt or Cu. The results are further investigated to search for the possible electrochemical intermediates along the CO2 reduction pathway. We’ve found that all of the tested elements are predicted to favor the hydrogen evolution reaction over CO2 reduction energetically (with the exception of Cu), and that only Group 8 elements are predicted to bind CO effectively and other cases prefer HCOOH formation. The observed CO binding preference could be rationalized via ligand field theory based on the molecular orbitals of the square planar complexes. With a suitable applied voltage to stabilize all of the adsorbed CO intermediates, Ru and Os are predicted to produce CH4, whereas Fe is predicted to produce CH3OH. Increasing the curvature of the CNT could reduce the required potential in the potential-determining step substantially. However, the predicted catalytic sequence is subject to only the selection of a metal center.
We explored how the strain effect changing the selectivity of carbon dioxide reduction (CO2RR) on strained copper (100) surface. The most important intermediates in CO2RR pathway like *H, *COOH, *CO, *CHO and *OCCOH were considered. We chose 0-8% compressed on a-axis and 0-10% expanded on b-axis copper (100) surfaces to modeling the strain effect. The relative energies of intermediates in the strained situation were calculated. Under this strained environment, CO2RR would be accelerated over HER more than 0.1 eV. And this strain effect wouldn't increase the energy barrier of potential determining step((_^*)CO→(_^*)CHO) in CO2RR reaction path. The stabilization induced by strain effect on key intermediate of 2C products, *OCCOH were stronger than *CHO by 0.15eV. And it would cause the faradic efficiency(FE) of 2C products higher than the conventional one. And we also mention that the strained effect may occur in the “defective” surface like grain-boundary-rich one and oxide-derived one. Even the intermediates may affect each other by the strain effect induced by themselves.
1. T. Abe, T. Yoshida, S. Tokita, F. Taguchi, H. Imaya and M. Kaneko, Journal of Electroanalytical Chemistry, 1996, 412, 125-132.
2. J. S. Baskin, H.-Z. Yu and A. H. Zewail, The Journal of Physical Chemistry A, 2002, 106, 9837-9844.
3. K. Kiyosawa, N. Shiraishi, T. Shimada, D. Masui, H. Tachibana, S. Takagi, O. Ishitani, D. A. Tryk and H. Inoue, The Journal of Physical Chemistry C, 2009, 113, 11667-11673.
4. V. B. McLaughlin, M. Faraggi and D. L. Leussing, Inorganic Chemistry, 1993, 32, 941-947.
5. D. Schaming, C. Costa-Coquelard, I. Lampre, S. Sorgues, M. Erard, X. Liu, J. Liu, L. Sun, J. Canny, R. Thouvenot and L. Ruhlmann, Inorganica Chimica Acta, 2010, 363, 2185-2192.
6. F. Zhao, J. Zhang, T. Abe, D. Wöhrle and M. Kaneko, Journal of Molecular Catalysis A: Chemical, 1999, 145, 245-256.
7. Z.-H. Zhao, J.-M. Fan and Z.-Z. Wang, Journal of Cleaner Production, 2007, 15, 1894-1897.
8. H. Nagao, T. Mizukawa and K. Tanaka, Inorganic Chemistry, 1994, 33, 3415-3420.
9. X. Y. Yi, Y. Liang and C. Li, RSC Advances, 2013, 3, 3477-3486.
10. Y. M. Badiei, D. E. Polyansky, J. T. Muckerman, D. J. Szalda, R. Haberdar, R. Zong, R. P. Thummel and E. Fujita, Inorganic Chemistry, 2013, 52, 8845-8850.
11. D. M. Arias-Rotondo and J. K. McCusker, Chemical Society Reviews, 2016, 45, 5803-5820.
12. K. Gong, F. Du, Z. Xia, M. Durstock and L. Dai, Science, 2009, 323, 760-764.
13. I. Y. Jeon, D. Yu, S. Y. Bae, H. J. Choi, D. W. Chang, L. Dai and J. B. Baek, Chemistry of Materials, 2011, 23, 3987-3992.
14. H. J. Choi, S. M. Jung, J. M. Seo, D. W. Chang, L. Dai and J. B. Baek, Nano Energy, 2012, 1, 534-551.
15. Y. Feng, F. Li, Z. Hu, X. Luo, L. Zhang, X. F. Zhou, H. T. Wang, J. J. Xu and E. G. Wang, Physical Review B - Condensed Matter and Materials Physics, 2012, 85.
16. J. Gao, J. Zhong, L. Bai, J. Liu, G. Zhao and X. Sun, Scientific Reports, 2014, 4.
17. M. Jiao, W. Song, K. Li, Y. Wang and Z. Wu, Journal of Physical Chemistry C, 2016, 120, 8804-8812.
18. Q. Liu, H. Zhang, H. Zhong, S. Zhang and S. Chen, Electrochimica Acta, 2012, 81, 313-320.
19. H. Wang, T. Maiyalagan and X. Wang, ACS Catalysis, 2012, 2, 781-794.
20. G. L. Chai and Z. X. Guo, Chemical Science, 2016, 7, 1268-1275.
21. D. H. Lee, W. J. Lee, W. J. Lee, S. O. Kim and Y. H. Kim, Physical Review Letters, 2011, 106.
22. X. Fu, J. Y. Choi, P. Zamani, G. Jiang, M. A. Hoque, F. M. Hassan and Z. Chen, ACS Applied Materials and Interfaces, 2016, 8, 6488-6495.
23. X. Fu, Y. Liu, X. Cao, J. Jin, Q. Liu and J. Zhang, Applied Catalysis B: Environmental, 2013, 130-131, 143-151.
24. J. E. Kim, J. Lim, G. Y. Lee, S. H. Choi, U. N. Maiti, W. J. Lee, H. J. Lee and S. O. Kim, ACS Applied Materials and Interfaces, 2016, 8, 1571-1577.
25. D. J. Li, U. N. Maiti, J. Lim, D. S. Choi, W. J. Lee, Y. Oh, G. Y. Lee and S. O. Kim, Nano Letters, 2014, 14, 1228-1233.
26. X. Zhang, Z. Wu, X. Zhang, L. Li, Y. Li, H. Xu, X. Li, X. Yu, Z. Zhang, Y. Liang and H. Wang, Nature Communications, 2017, 8.
27. S. R. Stoyanov, A. V. Titov and P. Král, Coordination Chemistry Reviews, 2009, 253, 2852-2871.
28. X. Chen, F. Li, N. Zhang, L. An and D. Xia, Physical Chemistry Chemical Physics, 2013, 15, 19330-19336.
29. W. I. Choi, B. C. Wood, E. Schwegler and T. Ogitsu, Advanced Energy Materials, 2015, 5.
30. F. He, K. Li, G. Xie, Y. Wang, M. Jiao, H. Tang and Z. Wu, Physical Chemistry Chemical Physics, 2016, 18, 12675-12681.
31. E. F. Holby, G. Wu, P. Zelenay and C. D. Taylor, Journal of Physical Chemistry C, 2014, 118, 14388-14393.
32. S. Kattel, P. Atanassov and B. Kiefer, Physical Chemistry Chemical Physics, 2014, 16, 13800-13806.
33. S. Kattel and G. Wang, Journal of Materials Chemistry A, 2013, 1, 10790-10797.
34. S. Kattel and G. Wang, Journal of Physical Chemistry Letters, 2014, 5, 452-456.
35. D. W. Kim, O. L. Li and N. Saito, Physical Chemistry Chemical Physics, 2014, 16, 14905-14911.
36. W. Liang, J. Chen, Y. Liu and S. Chen, ACS Catalysis, 2014, 4, 4170-4177.
37. K. Liu, S. Kattel, V. Mao and G. Wang, Journal of Physical Chemistry C, 2016, 120, 1586-1596.
38. Z. Lu, G. Xu, C. He, T. Wang, L. Yang, Z. Yang and D. Ma, Carbon, 2015, 84, 500-508.
39. C. R. Raj, A. Samanta, S. H. Noh, S. Mondal, T. Okajima and T. Ohsaka, Journal of Materials Chemistry A, 2016, 4, 11156-11178.
40. A. G. Saputro and H. Kasai, Physical Chemistry Chemical Physics, 2015, 17, 3059-3071.
41. K. Srinivasu and S. K. Ghosh, Journal of Physical Chemistry C, 2013, 117, 26021-26028.
42. C. E. Szakacs, M. Lefèvre, U. I. Kramm, J. P. Dodelet and F. Vidal, Physical Chemistry Chemical Physics, 2014, 16, 13654-13661.
43. V. Tripkovic, M. Vanin, M. Karamad, M. E. Björketun, K. W. Jacobsen, K. S. Thygesen and J. Rossmeisl, Journal of Physical Chemistry C, 2013, 117, 9187-9195.
44. M. J. Cheng, Y. Kwon, M. Head-Gordon and A. T. Bell, Journal of Physical Chemistry C, 2015, 119, 21345-21352.
45. G. Kresse and J. Furthmüller, Physical Review B - Condensed Matter and Materials Physics, 1996, 54, 11169-11186.
46. G. Kresse and J. Furthmüller, Computational Materials Science, 1996, 6, 15-50.
47. G. Kresse and J. Hafner, Physical Review B, 1993, 47, 558-561.
48. G. Kresse and J. Hafner, Physical Review B, 1994, 49, 14251-14269.
49. J. P. Perdew, K. Burke and M. Ernzerhof, Physical Review Letters, 1996, 77, 3865-3868.
50. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, Physical Review B, 1992, 46, 6671-6687.
51. A. D. Becke, Physical Review A, 1988, 38, 3098-3100.
52. D. C. Langreth and M. J. Mehl, Physical Review B, 1983, 28, 1809-1834.
53. G. Kresse and D. Joubert, Physical Review B, 1999, 59, 1758-1775.
54. R. P. Feynman, Physical Review, 1939, 56, 340-343.
55. P. Güttinger, Zeitschrift für Physik, 1932, 73, 169-184.
56. F. Calle-Vallejo and M. T. M. Koper, Angewandte Chemie International Edition, 2013, 52, 7282-7285.
57. S. Seo, K. Lee, M. Min, Y. Cho, M. Kim and H. Lee, Nanoscale, 2017, 9, 3969-3979.
58. X. Wan, H. Wang, H. Yu and F. Peng, Journal of Power Sources, 2017, 346, 80-88.
59. J. Yang, D. J. Liu, N. N. Kariuki and L. X. Chen, Chemical Communications, 2008, DOI: 10.1039/b713096a, 329-331.
60. C. Zhu, S. Fu, J. Song, Q. Shi, D. Su, M. H. Engelhard, X. Li, D. Xiao, D. Li, L. Estevez, D. Du and Y. Lin, Small, 2017, 13.
61. M. R. Mananghaya, Journal of Chemical Sciences, 2015, 127, 751-759.
62. Y. Hori, A. Murata and R. Takahashi, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1989, 85, 2309-2326.
63. A. A. Peterson and J. K. Nørskov, Journal of Physical Chemistry Letters, 2012, 3, 251-258.
64. F. Abild-Pedersen, J. Greeley, F. Studt, J. Rossmeisl, T. R. Munter, P. G. Moses, E. Skúlason, T. Bligaard and J. K. Nørskov, Physical Review Letters, 2007, 99.
65. P. U. Clark, J. D. Shakun, S. A. Marcott, A. C. Mix, M. Eby, S. Kulp, A. Levermann, G. A. Milne, P. L. Pfister, B. D. Santer, D. P. Schrag, S. Solomon, T. F. Stocker, B. H. Strauss, A. J. Weaver, R. Winkelmann, D. Archer, E. Bard, A. Goldner, K. Lambeck, R. T. Pierrehumbert and G.-K. Plattner, Nature Climate Change, 2016, 6, 360.
66. S. Rahmstorf, A. Cazenave, J. A. Church, J. E. Hansen, R. F. Keeling, D. E. Parker and R. C. J. Somerville, Science, 2007, 316, 709.
67. M. Wang and J. E. Overland, Geophysical Research Letters, 2009, 36, n/a-n/a.
68. C. S. Watson, N. J. White, J. A. Church, M. A. King, R. J. Burgette and B. Legresy, Nature Climate Change, 2015, 5, 565.
69. Y. Chen, N. S. Lewis and C. Xiang, Energy and Environmental Science, 2015, 8, 3663-3674.
70. M. Gattrell, N. Gupta and A. Co, Journal of Electroanalytical Chemistry, 2006, 594, 1-19.
71. Y. Hori, Modern Aspects of Electrochemistry, 2008, 42, 89-189.
72. M. Jitaru, D. A. Lowy, M. Toma, B. C. Toma and L. Oniciu, Journal of Applied Electrochemistry, 1997, 27, 875-889.
73. R. Reske, M. Duca, M. Oezaslan, K. J. P. Schouten, M. T. M. Koper and P. Strasser, Journal of Physical Chemistry Letters, 2013, 4, 2410-2413.
74. M. Spichiger-Ulmann and J. Augustynski, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1985, 81, 713-716.
75. S. Verma, B. Kim, H. R. M. Jhong, S. Ma and P. J. A. Kenis, ChemSusChem, 2016, 9, 1972-1979.
76. M. Asadi, K. Kim, C. Liu, A. V. Addepalli, P. Abbasi, P. Yasaei, P. Phillips, A. Behranginia, J. M. Cerrato, R. Haasch, P. Zapol, B. Kumar, R. F. Klie, J. Abiade, L. A. Curtiss and A. Salehi-Khojin, Science, 2016, 353, 467-470.
77. A. J. Morris, R. T. McGibbon and A. B. Bocarsly, ChemSusChem, 2011, 4, 191-196.
78. B. A. Rosen, A. Salehi-Khojin, M. R. Thorson, W. Zhu, D. T. Whipple, P. J. A. Kenis and R. I. Masel, Science, 2011, 334, 643-644.
79. M. Dunwell, Q. Lu, J. M. Heyes, J. Rosen, J. G. Chen, Y. Yan, F. Jiao and B. Xu, Journal of the American Chemical Society, 2017, 139, 3774-3783.
80. M. R. Singh, Y. Kwon, Y. Lum, J. W. Ager and A. T. Bell, Journal of the American Chemical Society, 2016, 138, 13006-13012.
81. K. P. Kuhl, T. Hatsukade, E. R. Cave, D. N. Abram, J. Kibsgaard and T. F. Jaramillo, Journal of the American Chemical Society, 2014, 136, 14107-14113.
82. Y. Hori, A. Murata, R. Takahashi and S. Suzuki, Chem. Lett., 1987.
83. X. Jiang, H. Wu, S. Chang, R. Si, S. Miao, W. Huang, Y. Li, G. Wang and X. Bao, Journal of Materials Chemistry A, 2017, 5, 19371-19377.
84. S. Kattel, B. Yan, Y. Yang, J. G. Chen and P. Liu, Journal of the American Chemical Society, 2016, 138, 12440-12450.
85. E. Kecsenovity, B. Endrödi, P. S. Tóth, Y. Zou, R. A. W. Dryfe, K. Rajeshwar and C. Janáky, Journal of the American Chemical Society, 2017, 139, 6682-6692.
86. S. Rasul, D. H. Anjum, A. Jedidi, Y. Minenkov, L. Cavallo and K. Takanabe, Angewandte Chemie - International Edition, 2015, 54, 2146-2150.
87. D. A. Torelli, S. A. Francis, J. C. Crompton, A. Javier, J. R. Thompson, B. S. Brunschwig, M. P. Soriaga and N. S. Lewis, ACS Catalysis, 2016, 6, 2100-2104.
88. H. P. Yang, Y. N. Yue, S. Qin, H. Wang and J. X. Lu, Green Chemistry, 2016, 18, 3216-3220.
89. A. M. Appel, J. E. Bercaw, A. B. Bocarsly, H. Dobbek, D. L. Dubois, M. Dupuis, J. G. Ferry, E. Fujita, R. Hille, P. J. A. Kenis, C. A. Kerfeld, R. H. Morris, C. H. F. Peden, A. R. Portis, S. W. Ragsdale, T. B. Rauchfuss, J. N. H. Reek, L. C. Seefeldt, R. K. Thauer and G. L. Waldrop, Chemical Reviews, 2013, 113, 6621-6658.
90. A. S. Hall, Y. Yoon, A. Wuttig and Y. Surendranath, Journal of the American Chemical Society, 2015, 137, 14834-14837.
91. S. Sen, D. Liu and G. T. R. Palmore, ACS Catalysis, 2014, 4, 3091-3095.
92. W. Tang, A. A. Peterson, A. S. Varela, Z. P. Jovanov, L. Bech, W. J. Durand, S. Dahl, J. K. Nørskov and I. Chorkendorff, Physical Chemistry Chemical Physics, 2012, 14, 76-81.
93. Y. Hori, I. Takahashi, O. Koga and N. Hoshi, Journal of Molecular Catalysis A: Chemical, 2003, 199, 39-47.
94. Y.-T. Chan and M.-K. Tsai, Physical Chemistry Chemical Physics, 2017, 19, 29068-29076.
95. Y. Hori, H. Wakebe, T. Tsukamoto and O. Koga, Electrochimica Acta, 1994, 39, 1833-1839.
96. A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl and J. K. Nørskov, Energy and Environmental Science, 2010, 3, 1311-1315.
97. Y. Hori, A. Murata, R. Takahashi and S. Suzuki, Journal of the Chemical Society, Chemical Communications, 1988, DOI: 10.1039/C39880000017, 17-19.
98. Y. Hori, A. Murata and Y. Yoshinami, Journal of the Chemical Society, Faraday Transactions, 1991, 87, 125-128.
99. A. Murata and Y. Hori, Bulletin of the Chemical Society of Japan, 1991, 64, 123-127.
100. Y. Hori, O. Koga, H. Yamazaki and T. Matsuo, Electrochimica Acta, 1995, 40, 2617-2622.
101. Y. Hori, R. Takahashi, Y. Yoshinami and A. Murata, Journal of Physical Chemistry B, 1997, 101, 7075-7081.
102. X. Liu, J. Xiao, H. Peng, X. Hong, K. Chan and J. K. Nørskov, Nature Communications, 2017, 8, 15438.
103. K. J. P. Schouten, Y. Kwon, C. J. M. Van Der Ham, Z. Qin and M. T. M. Koper, Chemical Science, 2011, 2, 1902-1909.
104. E. Pérez-Gallent, M. C. Figueiredo, F. Calle-Vallejo and M. T. M. Koper, Angewandte Chemie International Edition, 2017, 56, 3621-3624.
105. J. H. Montoya, C. Shi, K. Chan and J. K. Nørskov, Journal of Physical Chemistry Letters, 2015, 6, 2032-2037.
106. C. W. Li and M. W. Kanan, Journal of the American Chemical Society, 2012, 134, 7231-7234.
107. X. Feng, K. Jiang, S. Fan and M. W. Kanan, ACS Central Science, 2016, 2, 169-174.
108. E. L. Clark, C. Hahn, T. F. Jaramillo and A. T. Bell, Journal of the American Chemical Society, 2017, 139, 15848-15857.
109. I. S. Huang and M.-K. Tsai, The Journal of Physical Chemistry A, 2018, 122, 4654-4662.
110. B. Hammer, L. B. Hansen and J. K. Nørskov, Physical Review B, 1999, 59, 7413-7421.
111. T. Cheng, H. Xiao and W. A. Goddard, Proceedings of the National Academy of Sciences, 2017, 114, 1795-1800.
112. E. Skúlason, G. S. Karlberg, J. Rossmeisl, T. Bligaard, J. Greeley, H. Jónsson and J. K. Nørskov, Physical Chemistry Chemical Physics, 2007, 9, 3241-3250.
113. B. Hammer and J. K. Norskov, Nature, 1995, 376, 238.
114. B. Hammer and J. K. Nørskov, Surface Science, 1995, 343, 211-220.
115. B. Hammer and J. K. Nørskov, in Advances in Catalysis, Academic Press, 2000, vol. 45, pp. 71-129.
116. M. Mavrikakis, B. Hammer and J. K. Nørskov, Physical Review Letters, 1998, 81, 2819-2822.
117. F. Calle-Vallejo and M. T. M. Koper, Angewandte Chemie - International Edition, 2013, 52, 7282-7285.
118. J. H. Montoya, C. Shi, K. Chan and J. K. Nørskov, Journal of Physical Chemistry Letters, 2015, 6, 2032-2037.
119. J. D. Goodpaster, A. T. Bell and M. Head-Gordon, Journal of Physical Chemistry Letters, 2016, 7, 1471-1477.
120. W. Luo, X. Nie, M. J. Janik and A. Asthagiri, ACS Catalysis, 2016, 6, 219-229.
121. T. Cheng, H. Xiao and W. A. Goddard, III, Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1795-1800.
122. C. W. Li, J. Ciston and M. W. Kanan, Nature, 2014, 508, 504.
123. K.-S. Kim, W. J. Kim, H.-K. Lim, E. K. Lee and H. Kim, ACS Catalysis, 2016, 6, 4443-4448.