簡易檢索 / 詳目顯示

研究生: 吳亞芳
Ya-Fang Wu
論文名稱: 濕度對沾筆式奈米印刷術之應用
The Effect of Relative Humidity on Dip-Pen Nanolithography
指導教授: 洪偉修
Hung, Wei-Hsiu
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 65
中文關鍵詞: 沾筆式奈米印刷術原子力學顯微鏡
英文關鍵詞: Dip-Pen Nanolithography (DPN), Atomic Force Microscope (AFM)
論文種類: 學術論文
相關次數: 點閱:166下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用原子力學顯微鏡(Atomic Force Microscope,AFM)研究沾筆式奈米印刷技術(Dip-pen Nanolithography,DPN),並探討原子力學顯微鏡上,針尖上的墨水沾附在基板上的機制,文中選用兩種不同特性的分子作為奈米圖形化的研究,分別為MHA(16-mercaptohexadecanoic acid)以及ODT(1-octadecanethiol);兩者最大的不同點為,MHA是具有親水性的官能基,而ODT是具有疏水性的官能基。藉由改變相對濕度來觀察親水性和疏水性官能基在金表面上的吸附,並且瞭解這兩種分子在金表面的擴散程度;另外,將兩種不同官能基的分子混合,並且沈積到金表面上,進一步觀察親水性和疏水性官能基對於金基材表面的擴散情形。
    實驗結果顯示,親水性MHA分子會因為相對濕度的改變有很大的變化,疏水性ODT分子在環境相對濕度的改變下影響不大;MHA和ODT混合的墨水在基板上的擴散情形,會因為分子不同的特性造成親水性分子聚集在中央,疏水性的分子則擴散在親水性分子周圍;改變混合分子的相對濕度,發現相對濕度高的情況下,親水性分子的擴散速率遠大於疏水性分子,這更進一步證明環境的改變對於親水性分子的影響遠大於疏水性分子。

    In this thesis, we report the studies of the dip-pen nanolithography (DPN) technology using atomic force microscope (AFM) and linking mechanisms of 16-mercaptohexadecanoic acid (MHA) and 1-octadecanethiol (ODT) on the Au substrate. The diffusion and adsorption behaviors of the hydrophilic (MHA) and hydrophobic (ODT) functional groups on Au substrate under various relative humidity conditions were studied. In addition, we also examined the diffusion and adsorption of the binary alkanethiol mixture of MHA and ODT.

    We found that the diffusion of the hydrophilic MHA molecule was highly dependent on the relative humidity; a similar observation for hydrophobic ODT molecule was not made. A phase separation occurred in the binary alkanethiol mixture of MHA and ODT, in which the hydrophilic MHA tended to form patterned structure surrounded by the hydrophobic ODT. The phenomenon found contrasts to the bulk behavior of such adsorbates. Furthermore, in the binary alkanethiol mixture system, we also found that the MHA diffusion rate was significantly larger then that of ODT after increasing the relative humidity. Thus, we conclude that the hydrophilic molecule possesses a significant higher sensitivity to relative humidity compared with hydrophobic molecule.

    目錄 中文摘要...................................................Ⅰ 英文摘要...................................................Ⅱ 目錄......................................................Ⅲ 圖目錄.....................................................Ⅵ 表目錄...................................................ⅩⅡ 第一章 序論..............................................1 1.1 前言..................................................1 1.2 奈米微影技術...........................................1 1.3 研究動機...............................................4 第二章 文獻回顧與研究重點..................................7 2.1 自組裝薄膜..........................................7 2.1.1 自組裝薄膜硫醇類......................................7 2.2 原子力式顯微鏡(AFM)...............................10 2.2.1 呈像原理............................................10 2.2.2 系統架構............................................14 2.3 側向力顯微術(LFM)....................................15 2.4 沾筆式奈米微影技術介紹.................................17 2.4.1 沾筆式奈米印刷技術的傳輸機制..........................18 2.4.2 沾筆式奈米印刷技術的應用..............................20 第三章 實驗流程及儀器介紹.................................24 3.1 實驗藥品...........................................24 3.2 基板的製備.........................................24 3.3 墨水的製備.........................................25 3.4 實驗用探針.........................................25 3.5 實驗儀器...........................................27 3.6 實驗步驟...........................................29 第四章 實驗結果與討論.....................................31 4.1 MHA分子在不同濕度下對分子擴散的影響...................31 4.1.1 MHA分子............................................31 4.1.2 環境濕度和沈積時間對MHA分子擴散的影響..................32 4.2 ODT分子在不同濕度下對分子擴散的影響...................44 4.2.1 ODT分子............................................44 4.2.2 環境濕度和沈積時間對ODT分子擴散的影響..................44 4.3 混合的硫醇分子在金表面的分散現象......................57 4.4 混合的硫醇分子在不同的濕度下對分子擴散的影響...........58 第五章 結論與未來展望.....................................62

    參考文獻
    1.林熙翔,電子束微影簡介,機械工程雜誌,245期,97-105頁
    2.J. A. Dagata, W. Teseng, J. Bennet, C. J. Evans, J. Schneir, and H. H. Harary, Appl. Phys. Lett. 1990, 57, 2437.
    3.A. Kumar, G. M. Whitesides, Appl. Phys. Lett. 1993, 63, 2002.
    4.Y. Xia and G. M. Whitesides, Angew. Chem. Int. Ed. 1998, 37, 550.
    5.Y. Xia, E. Kim, X.-M. Zhao, J. A. Rogers, M. Prentiss, G. M. Whitesides, Science 1996, 273, 347.
    6.E. Kim, Y. Xia, G. M. Whitesides, Nature 1995, 376, 581.
    7.R.D. Piner, J. Zhu, F. Xu, S. Hong, C. A. Mirkin, Science, 1999, 283, 661.
    8.B.W. Maynor, S. F. Filocamo, M.W. Grinstaff, J. Liu, J. Am. Chem. Soc. 2002, 124, 522
    9.J. H. Lim, C. A. Mirkin, Adv. Mater. 2002, 14, 1474.
    10.A. Noy, A. E. Miller, J. E. Klare, B. L.Weeks, B. W.Woods, J. J. De Yoreo, Nano Lett. 2002, 2, 109.
    11.D. L. Wilson, R. Martin, S. Hong, M. Cronin-Golomb, C. A. Mirkin, D. L. Kaplan, Proc. Natl. Acad. Sci. USA 2001, 98, 13660.
    12.L. M. Demers, D. S. Ginger, S. J. Park, Z. Li, S.W. Chung, C. A. Mirkin, Science 2002, 296, 1836.
    13.J. H. Lim, D. S. Ginger, K. B. Lee, J. Heo, J. M. Nam, C. A. Mirkin, Angew. Chem. 2003, 115, 2411; Angew. Chem. Int. Ed. 2003, 42, 2309.
    14.Y. Li, B. W. Maynor, J. Liu, J. Am. Chem. Soc. 2001, 123, 2105.
    15.B.W. Maynor, Y. Li, J. Liu, Langmuir 2001, 17, 2575.
    16.L. A. Porter, H. C. Choi, J. M. Schmeltzer, A. E. Ribbe, L. C. C. Elliott, J. M. Buriak, Nano Lett. 2002, 2, 1369.
    17.Bigelow, W. C., Pickett, D. L., Zisman, W. A., Collid Interface Sci. 1946, 1, 513.
    18.Nuzzo, R. G. A., D. L., J. Am. Chem. Soc. 1983, 105, 4481.
    19.Abraham Ulman, Chem. Rev., 1996, 96, 1533.
    20.J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, G. M. Whitesides, Chem. Rev. 2005, 105, 1103.
    21.R. Wiesendanger, and H. J. Guntherodt eds., ”Scanning Tunneling Microscopy Ⅱ”, 1992.
    22.R. Wiesendanger, “Scanning Probe Microscopy and Spectroscopy”, 1994.
    23.汪建民主編,材料分析,第十一章,楊長謨撰。
    24.林俊勳,掃描式探針顯微鏡。
    25.Lennard-Jones, J. E. Cohesion. Proceedings of the Physical Society 1931, 43, 461.
    26.G. Meyer, and N. M. Amer, Appl. Phys. Lett. 1990, 57, 2089.
    27.C. M. Mate, G. M. McClelland, R. Erlandsson, S. Chiang, Phys. Rev. Lett. 1987, 59, 1942.
    28.DI MultiMode SPM Instruction Manual, Chapter 10.
    29.B. L. Weeks, A. Noy, A. E. Miller, J. J. De Yoreo, Phys. Rev. Lett. 2002, 88, 255505.
    30.P. E. Sheehan, L. J. Whitman, Phys. Rev. Lett. 2002, 88, 156104.
    31.S. Rozhok, R. Piner, C. A. Mirkin, J. Phys. Chem. B 2003, 107, 751.
    32.L. M. Demers, D. S. Ginger, S. J. Park, Z. Li, S.W. Chung, C. A. Mirkin, Science 2002, 296, 1836.
    33.Loo Y. L.; Willett, R. L.; Baldwin, K. W. , Rogers, J. A., Appl. Phys. Lett. 2002, 3, 562-564.
    34.J. Jang., S. Hong, G. C. Schatz, Mark A. Ratner, J. Chem. Phys. 2001, 115, 2721.
    35.A. Ivanisevic, C. A. Mirkin, J. Am. Chem. Soc. 2001, 123, 7887.
    36.J. H. Lim, C. A. Mirkin, Adv. Mater. 2002, 14, 1474.
    37.P. Manandhar, J. Jang, G. C. Schatz, M. A. Ratner, S. Hong, Phys. Rev. Lett. 2003, 90, 115505.
    38.D. S. Ginger, H. Zhang, and C. A. Mirkin, Angew. Chem. Int. Ed. 2004, 43, 30.
    39.E. J. Peterson, B. L. Weeks, J. J. D. Yoreo, P. V. Schwartz, J. Phys. Chem. B 2004, 108, 15206.
    40.X.N. Xie, H.J. Chung, C.H. Sow, A.T.S. Wee, Materials Science and Engineering R 2006, 54, 1.
    41.http://www.spmtips.com/csc17/al-bs
    42.Meylan W. M.; Howard P. H. EnViron. Toxicol. Chem. 1996, 15, 100.
    43.http://www.chem.northwestern.edu/~mkngrp/dpn.htm

    QR CODE