研究生: |
戴凱欣 Tai, Kai-Hsin |
---|---|
論文名稱: |
個人特質影響技專學生使用手機學習英文字彙之行為意圖:以學習自我效能、焦慮與後設認知之驗證性研究 Individual Characteristics Affect the Intention of Technological Students to Use Mobile Devices in English Vocabulary Learning: A Confirmatory Study in Relation to Learning Self-efficacy, Anxiety, and Metacognition |
指導教授: |
洪榮昭
Hong, Jon-Chao |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 105 |
中文關鍵詞: | 科技接受模式 、結構方程式 、行動學習 |
英文關鍵詞: | Technology Acceptance Model (TAM), Structural Equation Modeling (SEM), Mobile learning |
論文種類: | 學術論文 |
相關次數: | 點閱:233 下載:41 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究藉由Davis (1989)提出的科技接受模式(Technology Acceptance Model, TAM)來了解技專學生使用「學英文@師大」App學習英文字彙的行為意圖。研究採用立意取樣的方式進行問卷調查,共回收243份問卷,利用結構方程模式(SEM)檢定本研究的假設。本研究將五個外部變項分成三個模式探討其對於科技接受模式的影響,研究結果顯示學習自我效能愈好者對於「學英文@師大」App的易用性認知及有用性認知愈高;英文學習焦慮愈高者對於「學英文@師大」App的易用性認知及有用性認知愈高,而手機學習焦慮愈高者對於「學英文@師大」App的易用性認知也愈高;網路資訊認知能力愈低者對於使用「學英文@師大」App的易用性認知及有用性認知愈高,而後設認知愈高者對於使用「學英文@師大」App的易用性認知及有用性認知也愈高。此外,研究對象對於「學英文@師大」App的易用性及有用性認知也會影響其使用「學英文@師大」系統的態度及使用的行為意圖。依據研究發現,建議未來可以繼續開發相關的學習App,讓學習者可以更方便的使用行動學習。
Through Technology Acceptance Model (TAM), this study aimed to explore the intention of students on using mobile to learn English vocabulary. The questionnaire-survey adopted the purposive sampling method, and 243 questionnaires has been returned. In this study, Structural Equation Modeling (SEM) was the statistic way to confirm the hypotheses. The five external variables have been separated into three models to explore the effect of TAM. According to the result, participants who had higher learning self-efficacy, English learning anxiety, mobile learning anxiety, and metacognition might had higher cognition of using EVL@S. In addition, participants who had lower Internet cognitive fatigue might also had higher cognition of using EVL@S. Besides, participants’ cognition of using EVL@S might also influence the attitude, and intention of using EVL@S in English vocabulary learning. Hence, the conclusion suggested that creating more Apps can enable learners to have a convenient mobile learning.
參考文獻
中文參考文獻
吳文雄(1999)。在電腦技能訓練中學習者自律(未出版之博士論文)。國立中山大學,高雄市。
吳明隆、涂金堂(2005)。SPSS與統計應用分析。臺北市:五南。
吳武典(1971)。從心理動力學的觀點談影響學生學習的因素。教育文摘,16(5),5-11。
吳美虹(2005)。國小六年級學童英語字彙記憶策略與背景因素之研究-以台中縣為例(未出版之碩士論文)。國立臺北師範學院,臺北市。
沈姵文(2001)。宜蘭縣國中生父母管教態度、英語焦慮與英語學習動機之關係研究(未出版之碩士論文)。國立高雄師範大學,高雄市。
周子敬(2006)。結構方程模式(SEM)-精通LISREL。臺北縣:全華。
林至誠(2011)。多媒體輔助字彙學習:文獻回顧。師大學報語言與人文類。56(1),1-20。
林煌尊(2007)。商職學生英語焦慮、英語學習動機與英語學習策略之關係研究(未出版之碩士論文)。國立彰化師範大學,彰化縣。
林震城(1997)。兩岸大學生電腦態度與電腦素養之比較研究(未出版之碩士論文)。國立中央大學,桃園縣。
邱上真(1989)。後設認知研究在輕度障礙者教學上的應用。特殊教育季刊,30,12-16。
邱浩政(2006)。量化研究與統計分析。臺北市:五南。
孫志麟(1991)。自我效能的基本概念及其在教育上的應用。教育研究雙月刊,22,47-54。
張春興(1991)。教育心理學-三化取向的理論與實踐。台北市:東華。
張春興(1996)。教育心理學-三化取向的理論與實踐。臺北市:東華。
張春興(1999)。現代心理學。臺北市:東華。
梁茂森(1998)。國中生自我學習自我效能量表之編制。教育學刊,14,155-192。
莊蕙瑜(2007)。國小高年級學生英語焦慮、英語學習動機與英語學習策略之相關研究(未出版之碩士論文)。國立嘉義大學,嘉義市。
鄭麗玉(1993)。認知心理學-理論與應用。臺北市:五南。
英文參考文獻
Agarwal, R., & Prasad, J. (1999). Are individual differences germane to the acceptance of new information technologies? Decision Sciences, 30(2), 361-391.
Aida, Y. (1994). Examination of Horwitz, Horwitz, and Cope’s construct of foreign language anxiety: The case of students of Japanese. The Modern Language Journal, 78, 155-168.
Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In J. Kuhl, J. Beckmann (Eds.), Action-control: From cognition to behavior (pp. 11-39). Berlin, Germany: Springer-Verlag.
Anani, A., Zhang, D. Y., & Li, H. B. (2008). M-learning in review: Technology, standard and evaluation. Journal of Communication and Computer, 5(11), 1-6.
Bagozzi, R. P. (2007). The legacy of the technology acceptance model and a proposal for a paradigm shift. Journal of the Association for Information System, 8(4), 244-254.
Bailey, K. (1983). Competitiveness and anxiety in adult second language learning. In H. W. Seliger & M. H. Long (Eds.), Classroom oriented research in second language acquisition (pp.67-102). New York, NY: Newbury House.
Bandura, A. (1986). Social foundations of thought and Action: A social cognitive theory. Englewood Cliffs, NJ: Prentice Hall.
Bandura, A. (1997). Self-efficacy. Journal of Harvard Mental Health Letter, 13(9), 4-6.
Bartlett, F. C. (1943). Fatigue following highly skilled work. Proceedings of the Royal Society, Series B, 131, 247-257.
Brown, A. (1987). Metacognition, executive control, self-regulation and other more mysterious mechanisms. In F. E. Weinert, & R.H. Kluwe (Eds.), Metacognition, motivation, and understanding (pp. 21-29). Hillsdale, NJ: Lawrence Erlbaum.
Compearu, D. R., Higgins, C. A., & Huff, S. (1999). Social cognitive theory and individual reactions to computing technology: A longitudinal study. MIS Quarterly, 23(2), 145-158.
Compearu, D. R., & Higgins, C. A. (1995). Application of social cognitive theory to training for computer skills. Information Systems Research, 6(2), 118-143.
Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS Quarterly, 19(2), 189-211.
Craig, A., & Cooper, R. E. (1992). Symptoms of acute and chronic fatigue. In A. P. Smith, & D. M. Jones (Eds.), Handbook of human performance: Vol. 3. State and trait (pp. 289-339). London, England: Academic Press.
Davis, F. D. (1986). A technology acceptance model for empirically testing new end-user information system: Theory and results. (Ph.D. Dissertation) MIT Sloan School of management, Cambridge, MA.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and acceptance of information technology. MIS Quarterly, 13(3), 319-340.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace. Journal of Applied Social Psychology, 22(14), 1111-1132.
Fairclough, S.H. (2001). Mental effort regulation and the functional impairment of the driver. In P.A. Hancock & P.A. Desmond (Eds.), Stress, workload, and fatigue (pp.479–502). Mahwah, NJ: Lawrence Erlbaum Associates.
Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behavior: an introduction to theory and research. Boston, MA: Addison- Wesley.
Flavell, J. H. (1976). Metacognition aspects of problem solving. In L. B. Resnick (Eds.), The nature of intelligence (pp.231-235). Hillsdale, NJ: Lawrence Erlbaum Associates.
Flavell, J. H. (1981). Cognitive monitoring. In P. Dickson (Ed.). Children’s oral communication skills (pp. 35-60). New York, NY: Academic Press.
Flavell, J. H. (1985). Cognitive development (2nd Ed). Englewood Cliffs, NJ: Prentice-Hall.
Gardner, R. C., & MacIntyre, P. D. (1993). On the measurement of affective variables in Second Language Learning. Language Learning, 43(2), 157-194.
Gregersen, T (2004). Nonverbal cues: Clues to the detection of foreign language anxiety. Foreign Language Annals, 38 (3), 388-400.
Hair, J., Anderson, R., Tatham, R., & Black, W. (1998). Multivariate data analysis (5th ed.). Englewood Cliffs, NJ: Prentice-Hall.
Hair, J., Black, B., Babin, B., Anderson, R.E., & Tatham, R.L. (2009). Multivariate Data Analysis (7 ed.). Englewood Cliffs, NJ: Prentice Hall.
Hong, J. C., Hwang, M. Y., Hsu, H. F., Wong, W. T., & Chen, M. Y. (2011). Applying the technology acceptance model in a study of the factors affecting usage of the Taiwan digital archives system. Computers & Education, 57, 2086-2094.
Horwitz , E. K., & Horwitz , M. B., & Cope , J. (1986). Foreign language classroom anxiety. The Modern Language Journal, 70 ( 2 ), 125-132.
Horwitz, E. (1986). Preliminary evidence for the reliability and validity of a foreign language anxiety scale. TESOL Quarterly, 20, 559-562.
Horwitz, E.K., Horwitz, M. B., & Cope, J. (1986). Foreign language classroom anxiety. Modern Language Journal, 70, 125-132.
Job, R. F. S., & Dalziel, J. (2001). Defining fatigue as a condition of the organism and distinguishing it from habituation, adaptation, and boredom. In P. A. Hancock & P. A. Desmond (Eds.), Stress, workload, and fatigue (pp. 466-475). Mahwah, NJ: Lawrence Erlbaum Associates.
Laufer, B. (1997). What’s in a word that makes it hard or easy: Some intralexical factors that affects the learning of words. In Schmitt & M. McCartly (Eds.). Vocabulary Description, Acquisition and Pedagogy (pp. 140-155). Cambridge, England: Cambridge University Press.
Lee, M. C. (2010). Explaining and predicting users’ continuance intention toward E-Learning. Computers & Education, 54, 506-516.
Lee, S. (2012). An integrate adoption model for e-Books in a mobile environment. Telematic and Informatics, 2012, 1-30.
Linnenbrink, E. A., & Pintrich, P. R. (2003). The role of self-efficacy beliefs in student engagement and learning in the classroom. Journal of Reading & Writing Quarterly, 19(2), 119-137.
Liu, S. H. & Liao, H. L., & Pratt, J. A. (2009). Impact of media richness and flow on e-learning technology acceptance. Computers & Education, 52, 599-607.
MacIntyre, P. D., & Gardner, R. C. (1989). Anxiety and second language learning: Toward a theoretical clarification. Language Learning, 39, 251-75.
Martinez-Torres, M. R., Toral, S. L. T. Marin., Garcia, F. B., Vazquez, S. G., Oliva, M. A., & Torres, T. (2008). A technological acceptance of E-Learning tools used in practical and laboratory teaching. Behavior & Information Technology, 27, 495-505.
Matthews, G., Davies, D. R., Westerman, S. J., & Stammers, R. B. (2000). Human performance: Cognition, stress and individual differences. Philadelphia, PA: Taylor & Francis.
Mcneil, D. W., Turk, C. L., & Rice, B. I. (1994). Anxiety and fear. Human Behavior, 14(1), 151-163.
Munn, N.L., Fernald, Jr. L. D., & Fernald, P. S. (1969). Introduction to Psycchology. Oxford, England: Houghton Miffin.
Nunnally, J. C. (1978). Psychometric theory (2nd ed.). New York, NY: McGraw-Hill.
Obilinger, D. G. (2003). Boomers & gen-Xers, millennials: Understanding the “new students”. Educause Review, 38(4), 37–47.
Oblinger, D. G. (2004). The next generation of educational engagement. Journal of Interactive Media in Education, 8, Retrieved March 17, 2012 from http://www-jime.open.ac.uk/2004/8/oblinger-2004-8-disc-t.html
Pajares, F., & Miller, M.D. (1994). The role of self-efficacy and self-concept belief in mathematical problem-solving: A path analysis. Journal of Educational Psychology, 86, 193-203.
Pintrich, P. R., & De Groot, E. V. (1990). Motivational and self-regulated learning components of classroom academic performance. Journal of Educational Psychology, 82, 33-40.
Pintrich, P. R., & Schrauben, B. (1992). Students’motivational beliefs and their cognitive engagement in classroom tasks. In D. Schunk & J. Meece(Eds.), Student perceptions in the classroom: Causes and consequences (pp.149-183). Hillsdale, NJ: Lawrence Erlbaum Associates.
Prensky, M. (2001). Digital game-based learning. New York, NY: McGraw-Hill.
Presley, A., & Presley, T. (2009). Factors influencing student acceptance and use of academic portals. Journal of Computing in Higher Education, 21, 167-182.
Reigeluth, C. M. (1983). Instructional- design theories and models. Mahwah, NJ: Lawrence Erlbaum Associates.
Rogers, E.M. (1995). Diffusion of innovations. New York, NY: Free Press.
Sarason, I. G. (1984). Stress, anxiety, and cognitive interference: Reactions to Tests. Journal of Personality and Social Psychology, 46, 929-938.
Schraw, G., & Dennison, R. S. (1994). Assessing metacognitive awareness. Contemporary Educational Psychology, 19, 460-475.
Schunk, D. H. (1988). Perceived self-efficacy and related social cognitive processes as predictors of student academic performance. (Education Resources Information Center Document No. ED293886)
Schunk, D. H. (1991). Self-efficacy and academic motivation. Journal of Educational Psychologist Review, 1, 173-208.
Shin, D. H. (2007). User acceptance of mobile Internet: Implication for convergence technologies. Interacting with Computer, 19(2007), 472-483.
Taylor, S., & Todd, P. A. (1995). Understanding information technology usage: A test of competing models. Information System Research, 6(2), 145-176.
Thomas, S. (2005). Pervasive, persuasive eLearning: Modeling the pervasive learning space. Proceedings of the 3rd international conference on pervasive computing and communications workshops (PERCOMW’05) (pp. 332–336). Kauai Island, Hawaii: IEEE Computer Society.
Triandis, H. C. (1977). Interpersonal behavior. Monterey, CA:Brooks/ Cole.
Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decisioin Sciences, 39(2), 273-315.
Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204.
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view1. Management Information Systems Quarterly, 27(3), 425-478.
Vermeer, A. (1992). Exploring the second language learner lexicon. In L. Verheoeven and J, De Jong (Ed.). The construct of language proficiency: Applications of psychological models to language assessment. Amsterdam, Holand: John Benjamins.
Wellman, H. M., Collins, J., & Gliberman, J. (1981). Understanding the combination of memory variables: Developing conceptions of memory limitations. Child Development, 52, 1313-1317.
Wigfield, A. (1994). Expectancy-value theory of achievement motivation: A developmental perspective. Journal of Educational Psychology Review, 6, 49-78.
Wilkins, D. (1972). Linguistics and language teaching. London, England: Edward Arnold.
Yang, S. T., Fang, H. C., Chuang, C., & Li, H. A. (2011). Applying the technology acceptance investigate consumers’ acceptance of digital learning system. Energy Procedia, 13, 3166-3173.
Young, D. J. (1991). An investigation of students’ perspectives on anxiety and speaking. Foreign Language Annuals, 23, 539-553.