簡易檢索 / 詳目顯示

研究生: 吳建源
Wu, Jian-Yuan
論文名稱: 探討高中生於探究導向的社會性科學議題學習中(SSIBL)之探究能力表現—以「減碳」議題為例
Exploring high school students’ inquiry learning performance regarding the issue of “Carbon Reduction” under a Socio-Scientific Inquiry-Based Learning (SSIBL) framework
指導教授: 許瑛玿
Hsu, Ying-Shao
口試委員: 林樹聲
Lin, Shu-Sheng
顏妙璇
Yan, Miao-Xuan
許瑛玿
Hsu, Ying-Shao
口試日期: 2022/12/01
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 158
中文關鍵詞: 探究能力社會性科學議題探究導向的社會性科學議題學習
英文關鍵詞: Inquiry ability, SocioScientific Issues, Socio-Scientific Inquiry-Based Learning
研究方法: 準實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202300033
論文種類: 學術論文
相關次數: 點閱:184下載:61
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 基於相關研究的缺乏與研究者自身教學的反思,鮮少有完整探究歷程的教學活動與訓練。因此,本研究以「減碳」議題為主軸設計SSI課程,透過探究導向的社會性科學議題學習(SSIBL)的訓練後,探討高中生的探究能力(發現問題、規劃與研究、論證與建模)改變情形,以及於課程期間的探究能力表現情形。
    本研究採單一組前測、後測設計,以便利取樣的方式選取臺北市某高中高二學生共49名為研究對象,並進行五週十節課的教學實施(課程名稱:減碳產電小大師)。研究過程中蒐集學生於探究能力測驗與SSI課程學習單的作答內容,並透過描述性統計、無母數檢定法之魏氏考驗,以及U考驗進行研究結果分析。研究結果發現:(一)SSI課程對於整體學生的探究能力皆有顯著幫助,進步幅度最大的為「發現問題」,其次是「規劃與研究」,而「論證與建模」進步幅度最小。(二)在SSI課程中,整體學生的作答表現結果顯示最佳的為「發現問題」,接著依序是「規劃與研究」以及「論證與建模」。(三)先備探究能力較高的學生在SSI課程學習單中的探究表現優於先備探究能力較低的學生,但進一步分析只有「論證與建模」的探究子能力有顯著差異。(四)先備探究能力較低的學生,其探究能力進步幅度明顯優於先備探究能力較高的學生。
    本研究期許發展的SSI課程能幫助教師於教學現場中提供學生完整的探究歷程與提升其探究能力,亦建議未來如有相關研究,可融入學生「表達與分享」的內容並蒐集其資料進行研究分析。

    This study aimed to explore the effect of the SocioScientific Inquiry-Based Learning (SSIBL) learning module on high school students’ inquiry abilities (including recognizing the questions, planning the research, and argumentation and modeling) in an issue about “Carbon Reduction.”
    The one-group pretest-posttest design was adopted. A total of 49 11th graders from Taipei City participated in this study via convenient sampling. Students’ responses to the pre-and post-tests of inquiry ability and worksheets were collected and analyzed. The results revealed that: (1) Students’ inquiry ability improved significantly after the SSIBL learning module, especially in recognizing the questions. (2) The analysis of students’ worksheets indicated that students demonstrated better performance in recognizing the questions than the other two. (3) In contrast to students with lower prior inquiry abilities, students with higher prior-inquiry abilities exhibited significant improvement in argumentation and modeling in the SSIBL learning module. (4) Students with lower prior inquiry abilities showed a significant improvement in inquiry abilities after receiving the SSIBL learning module compared to those with higher prior inquiry abilities.
    These results bring some insights to the teachers of infusing the SSIBL framework into their classrooms to improve students’ inquiry abilities. Also, further study in examining students’ ability to “communicate and share” is encouraged because it is a critical ability in the inquiry practice.

    第一章 緒論1 第一節 研究動機與背景1 第二節 研究目的3 第三節 研究問題4 第四節 研究的重要性5 第五節 名詞釋義6 第六節 研究範圍與限制8 第二章 文獻探討9 第一節 科學探究9 第二節 社會性科學議題19 第三節 探究導向的社會性科學議題學習24 第三章 研究方法28 第一節 研究對象與實施情境28 第二節 研究流程與設計30 第三節 研究工具47 第四節 資料分析50 第四章 研究結果與歸因69 第一節 SSI課程對學生學習探究能力的影響69 第二節 SSI課程對不同先備探究能力學生在學習探究能力的影響85 第五章 結論與建議89 第一節 研究發現89 第二節 綜合討論90 第三節 檢討與建議92 參考文獻95 附錄102

    于佳玉(2020)。探究式教學輔以數位教育遊戲對高中生認知與科學探究能力之影響─以Anter螞蟻研究所為例(未出版之碩士論文)。國立彰化師範大學生物學系,彰化縣。
    王昱程(2020)。培育國小師資生以POE&科學解釋文字鷹架設計昆蟲實驗與微型教學增進科學探究能力與科學解釋能力(未出版之碩士論文)。國立臺北教育大學自然科學教育學系,臺北市。
    行政院(民110年9月)。立法院第10屆第4會期行政院施政報告。臺北市:行政院。
    吳心楷、許瑛玿、黃福坤與任宗浩(2014)。科學探究能力的數位評量:以模擬為導向的線上系統–總計畫之研發。行政院國家科學委員會。
    吳佩芬(2018)。中學生於跨級同儕教學對科學探究能力影響之個案研究(未出版之碩士論文)。國立彰化師範大學科學教育研究所,彰化縣。
    吳喬恩(2021)。國小高年級學生對於社會性科學議題之非形式推理思考表現及其線上合作論證之研究:以人工智慧相關議題為例(未出版之碩士論文)。國立中央大學網路學習科技研究所,桃園市。
    李佩螢(2020)。同異質分組並行的高中數學教學之行動研究(未出版之碩士論文)。國立臺灣師範大學數學系,臺北市。
    林小慧、吳心楷(2019)。科學探究能力評量之標準設定與其效度檢核。教育心理學報,50(3),頁473-502。
    林玉蓮(2018)。開放式生物探究活動對馬來西亞高二學生科學探究能力的影響(未出版之碩士論文)。國立彰化師範大學科學教育研究所,彰化縣。
    林芬如(2019)。創造性探究教學模組對高中社團學生科學探究能力、科學創造力與科學學習動機之影響(未出版之博士論文)。國立彰化師範大學科學教育研究所,彰化縣。
    林建偉(2019)。以科學探究能力應用於山洪、土石流防災課程實施歷程之研究-以臺中市某國小五年級學童為例(未出版之碩士論文)。國立臺中教育大學科學教育與應用學系碩士班,臺中市。
    林樹聲(2004)。應用學習環策略進行科技引起的社會爭議議題之教學研究。行政院國家科學委員會補助專題研究計畫成果報告(計畫編號: NSC92-2511-S-415-003),未出版。
    林樹聲(2008)。科學教室中的社會性科學議題之教學。教師之友,49(4),2-6。
    林樹聲、黃柏鴻(2009)國小六年級學生在社會性科學議題教學中之論證能力研究-不同學業成就學生間之比較。科學教育學刊,17(2),111-133。
    林樹聲、靳知勤(2012)。國小教師實踐社會性科學議題教學之教師知識成長與比較。科學教育學刊,20(1),41-68。
    洪詠善(2016)。學習趨勢:跨領域、現象為本的統整學習。國家教育研究院電子報,(134)。
    徐琬庭(2020)。探討社會性科學議題導向課程中11年級生小組互動對其社會性科學推理的影響(未出版之碩士論文)。國立臺灣師範大學科學教育研究所,臺北市。
    徐菀娸(2020)。幼兒的科學探究能力發展情形:大班幼兒參與科學探究模組之研究(未出版之碩士論文)。國立臺灣師範大學科學教育研究所,臺北市。
    高虞昕(2021)。提升幼兒科學探究能力之行動研究(未出版之碩士論文)。國立高雄師範大學教育學系,高雄市。
    張文馨(2018)。探討高中生在社會性科學議題決策課程中非形式推理能力、小組協作調整行為與決策方法的關係(未出版之博士論文)。國立臺灣師範大學科學教育研究所,臺北市。
    教育部(2018)。國民中小學暨普通型高級中等學校十二年國民基本教育課程綱要自然科學領域。臺北市:教育部。
    陳品妤(2020)。運用STEM教育與積木建構提升幼兒科學探究能力之歷程(未出版之碩士論文)。國立臺東大學幼兒教育學系碩士班,臺東縣。
    陳美智(2019)。高中生科學探究能力、科學推理能力、科學證據概念及科學論證概念徑路模式之研究(未出版之博士論文)。國立高雄師範大學科學教育暨環境教育研究所,高雄市。
    陳偉軒(2018)。趣味動手小實作對高一理科學生科學探究能力及學習成就之影響(未出版之碩士論文)。國立彰化師範大學科學教育研究所,彰化縣。
    詹渝崴(2017)。科學探究影片中提問策略對國小高年級學生科學探究能力及科學探究本質之影響(未出版之碩士論文)。國立臺灣師範大學資訊教育研究所,臺北市。
    劉宜青(2014)。加強國小學生發展與權衡判準之科學教學對其在社會性科學議題中做決定能力之影響(未出版之碩士論文)。國立嘉義大學數理教育研究所,嘉義市。
    蔡幸如(2019)。探討「POE&科學解釋文字鷹架」教學法對研究生 設計實驗、教學及科學探究能力的影響(未出版之碩士論文)。國立臺北教育大學自然科學教育學系,臺北市。
    蔡姿婷(2015)。發展核能環境教育網路課程幫助學生社會性科學議題學習之成效(未出版之碩士論文)。國立高雄師範大學科學教育暨環境教育研究所,高雄市。
    蕭翔文(2021)。仿生機器人STEAM課程對六年級學童的科學探究能力與對科學的態度之影響研究(未出版之碩士論文)。國立清華大學數理教育研究所,新竹市。
    羅加佳(2013)。以證據導向社會性科學議題教學促進國中學生評判證據與論證能力之研究(未出版之碩士論文)。國立嘉義大學數理教育研究所,嘉義市。
    AAAS[American Association for the Advancement of Science] (1989). Science for. all Americans: a Project 2061 report on literacy goals in science, mathematics,and technology (pp. 3-31& 133-139). Washington, D.C.: American Associationfor the Advancement of Science.
    Abd‐El‐Khalick, F., Boujaoude, S., Duschl, R., Lederman, N. G., Mamlok‐Naaman, R., Hofstein, A., ... & Tuan, H. L. (2004). Inquiry in science education: International perspectives. Science education, 88(3), 397-419.
    Amos, R. I. J., & Levinson, R. (2019). Socio-scientific inquiry-based learning: An. approach for engaging with the 2030 Sustainable Development Goals through school science. International Journal of Development Education and Global Learning, 11(1), 29-49.
    Amos, R., Knippels, M.-C., & Levinson, R. (2020). Socio-scientific inquiry-based. learning: Possibilities and challenges for teacher education. . Science teacher education for responsible citizenship, 41-61.
    Anisa, A., Widodo, A., Riandi, R., & Muslim, M. (2019, November). Genetics in. socio scientific issues: Measuring rebuttal abilities in scientific argumentation. In Journal of Physics: Conference Series (Vol. 1280, No. 3, p. 032002). IOP Publishing.
    Bayram‐Jacobs, D., Henze, I., Evagorou, M., Shwartz, Y., Aschim, E. L., Alcaraz‐Dominguez, S., ... & Dagan, E. (2019). Science teachers' pedagogical content knowledge development during enactment of socioscientific curriculum materials. Journal of Research in Science Teaching, 56(9), 1207-1233.
    Bybee, R. W., & Bonnstetter, R. (1985). Science/technology/society: A survey of science teachers. Science-technology-society.
    Capkinoglu, E., Yilmaz, S., & Leblebicioglu, G. (2020). Quality of argumentation by seventh‐graders in local socioscientific issues. Journal of Research in Science Teaching, 57(6), 827-855.
    Capkinoglu, E., Yilmaz, S., & Leblebicioglu, G. (2020). Quality of argumentation by seventh‐graders in local socioscientific issues. Journal of Research in Science Teaching, 57(6), 827-855.
    Capkinoglu, E., Yilmaz, S., & Leblebicioglu, G. (2020). Quality of argumentation by seventh‐graders in local socioscientific issues. Journal of Research in Science Teaching, 57(6), 827-855.
    Dewey, J. (1910). How we think: A restatement of the relation of reflective thinking to the educative process. Boston, MA: D.C. Heath.
    Fatmaryanti, S. D., & Kurniawan, H. (2018, June). Magnetic force learning with Guided Inquiry and Multiple Representations Model (GIMuR) to enhance students' mathematics modeling ability. In Asia-Pacific Forum on Science Learning & Teaching (Vol. 19, No. 1).
    Ibourk, A., & Kendrick, M. (2021). Elementary students’ explanation of variation of traits and teacher‘s feedback using an online embedded assessment tool. International Journal of Science Education, 43(8), 1173-1192.
    Levinson, R. (2018). Introducing socio-scientific inquiry-based learning(SSIBL). School Science Review, 100(371), 31-35.
    Levinson, R., & PARRISE-Consortium. (2017). Socio-scientific inquiry-based learning: Taking off from STEPWISE. In Science and technology education promoting wellbeing for individuals, societies and environments (pp. 477–502). Cham: Springer.
    Levinson, R., Hand, M., & Amos, R. (2012). What constitutes high quality discussion skills in science? Research from the Perspectives on Science course. School Science Review, 93(344), 114-120.
    Linn, M. C., Clark, D., & Slotta, J. D. (2003). WISE design for knowledge integration. Science Education, 87(4), 517-538.
    Moon, S., & Choi, W. (2018). The Effect of High School Research Project using the Science Writing Heuristic. Journal of the Korean Chemical Society, 62(5), 398-411.
    National Research Council. (2000). Inquiry and the National Science Education Standards. Washington, DC: National Academy Press.
    National Research Council. (1996). National science education standards. Washington, DC: National Academy Press.
    National Research Council. (2000). Inquiry and the national science education standards: A guide for teaching and learning. Washington, DC: National Academy Press.
    Pratiwi, Y., Rahayu, S., & Fajaroh, F. (2016). Socioscientific issues (ssi) in reaction rates topic and its effect on the critical thinking skills of high school students. Jurnal Pendidikan IPA Indonesia, 5(2), 164-170.
    Sadler, T. D. (2004). Informal reasoning regarding socioscientific issues: A critical review of research. Journal of Research in Science Teaching, 41(5), 513-536.
    Shamos, M. H. (1995). The myth of scientific literacy. New Jersey, NJ: Rutgers.
    Singer, J., Marx, R. W., Krajcik, J., & Clay Chambers, J. (2000). Constructing extended inquiry projects: Curriculum materials for science education reform. Educational Psychologist, 35(3), 165-178.
    Sutcliffe, H. (2011). A report on responsible research and innovation. MATTER and the European Commission.
    Tansomboon, C., Gerard, L. F., Vitale, J. M., & Linn, M. C. (2017). Designing Automated Guidance to Promote Productive Revision of Science Explanations. International Journal of Artificial Intelligence in Education, 27(4), 729-757.
    Tomas, L., & Ritchie, S. M. (2011). Positive Emotional Responses to Hybridised Writing about a Socio-Scientific Issue. Research in Science Education, 42(1), 25-49.
    Tsai, C. Y. (2018). The effect of online argumentation of socio-scientific issues on students' scientific competencies and sustainability attitudes. Computers & Education, 116, 14-27.
    Wu, P.-H., & Wu, H.-K. (2020). Constructing a model of engagement in scientific inquiry: investigating relationships between inquiry-related curiosity, dimensions of engagement, and inquiry abilities. Instructional Science, 48(1), 79-113.
    Yoon, J., Jo, T. J., & Kang, S. J. (2020). A study on the possibility of the relationship among group creativity, empathy, and scientific inquiry ability of elementary school students. International Journal of Science Education, 42(13), 2113-2125.
    Zeidler, D. L. (2014). Socioscientific issues as a curriculum emphasis: Theory, research, and practice. In Handbook of research on science education, volume II (pp. 711-740). Routledge.
    Zeidler, D. L. (2014). Socioscientific issues as a curriculum emphasis. In N. G. Lederman, & S. K. Abell (Eds.), Handbook of research on science education. (Vol. 2, pp.697-726). New York, NY: Routledge Press.
    Zeidler, D. L., & Nichols, B. H. (2009). Socioscientific issues: Theory and practice. Journal of elementary science education, 21(2), 49-58.
    Zeidler, D. L., Sadler, T. D., Simmons, M. L., & Howes, E. V. (2005). Beyond STS: A research-based framework for socioscientific issues education. Science Education, 89(3), 357-377.

    下載圖示
    QR CODE