研究生: |
楊佳峻 Yang, Chia-Chun |
---|---|
論文名稱: |
基於毛筆電噴灑/質譜法快速線上微採樣之農藥分析方法 Rapid on-line microextraction method for pesticide analysis based on brush-spray/mass spectrometry |
指導教授: |
林震煌
Lin, Cheng-Huang |
口試委員: |
李君婷
Li, Chun-Ting 何家安 Ho, Ja-An 林震煌 Lin, Cheng-Huang |
口試日期: | 2023/06/06 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 59 |
中文關鍵詞: | 毛筆 、農藥 、腐絕 、電噴灑質譜法 |
英文關鍵詞: | Calligraphy brush, Electrospray mass spectrometry, Pesticides, Thiabendazole |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202301096 |
論文種類: | 學術論文 |
相關次數: | 點閱:74 下載:18 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用了一種快速的方式結合電噴灑質譜法(ESI-MS)的檢測技術,利用毛筆當作採樣的工具,沾取甲醇後輕刷採樣放置於質譜入口和電噴灑的針尖。由於甲醇溶劑易揮發的特性,因此分析物會隨著溶劑從毛筆表面上逸出。當分析物與電噴灑輔助溶劑的帶電粒子接觸會使分析物被離子化,而分析物將被一起游離透過質譜儀進行檢測。本實驗透過此技術應用於農藥殘留的檢驗,以沾甲醇的毛筆在橘子表面塗抹,收集殘留於橘子表面的腐絕農藥,並且根據橘子表面上殘留的腐絕做了放置不同時間下以及用不同方式清洗橘子表面後的農藥殘留。以證明此方法用於農藥殘留檢驗的可行性,以及相較傳統不須經過前處理準備的方便和快速性。
A rapid approach that combines the detection technique of electrospray ionization mass spectrometry (ESI-MS) with the use of a brush as a sampling tool. The brush was dipped in methanol and lightly brushed on the sample surface, specifically at the mass spectrometer inlet and the tip of the electrospray needle. Due to the volatile nature of the methanol solvent, the analytic would evaporate from the brush surface along with the solvent. When the analytic came into contact with the charged particles of the electrospray-assisting solvent, they were ionized, and the ionized analyses were subsequently detected by the mass spectrometer. This technique was applied in this experiment for the analysis of pesticide residues. A methanol-dipped brush was used to swipe across the surface of oranges to collect the pesticide residues present. Different durations of brush contact and various surface cleaning methods were tested to investigate the pesticide residue levels remaining on the orange surface. This was done to demonstrate the feasibility of this method for pesticide residue analysis and its convenience and rapidity compared to traditional preparation methods that do not require prior treatment.
(1) Nougadère, A.; Reninger, J.-C.; Volatier, J.-L.; Leblanc, J.-C. Chronic Dietary Risk Characterization for Pesticide Residues: A Ranking and Scoring Method Integrating Agricultural Uses and Food Contamination Data. Food and Chemical Toxicology 2011, 49 (7), 1484–1510.
(2) Chen, J.; Huang, Y.; Kannan, P.; Zhang, L.; Lin, Z.; Zhang, J.; Chen, T.; Guo, L. Flexible and Adhesive Surface Enhance Raman Scattering Active Tape for Rapid Detection of Pesticide Residues in Fruits and Vegetables. Anal. Chem. 2016, 88 (4), 2149–2155.
(3) Singh, B. K. Organophosphorus-Degrading Bacteria: Ecology and Industrial Applications. Nat Rev Microbiol 2009, 7 (2), 156–164.
(4) Md Meftaul, I.; Venkateswarlu, K.; Dharmarajan, R.; Annamalai, P.; Megharaj, M. Pesticides in the Urban Environment: A Potential Threat That Knocks at the Door. Science of The Total Environment 2020, 711, 134612.
(5) Liu, B.; Han, G.; Zhang, Z.; Liu, R.; Jiang, C.; Wang, S.; Han, M.-Y. Shell Thickness-Dependent Raman Enhancement for Rapid Identification and Detection of Pesticide Residues at Fruit Peels. Anal. Chem. 2012, 84 (1), 255–261.
(6) Mei, B.; Zhang, W.; Chen, M.; Wang, X.; Wang, M.; Ma, Y.; Zhu, C.; Deng, B.; Wang, H.; Shen, S.; Tong, J.; Gao, M.; Han, Y.; Feng, D. Research and Application of In Situ Sample-Processing Methods for Rapid Simultaneous Detection of Pyrethroid Pesticides in Vegetables. Separations 2022, 9 (3).
(7) Tisler, S.; Engler, N.; Jørgensen, M. B.; Kilpinen, K.; Tomasi, G.; Christensen, J. H. From Data to Reliable Conclusions: Identification and Comparison of Persistent Micropollutants and Transformation Products in 37 Wastewater Samples by Non-Target Screening Prioritization. Water Research 2022, 219, 118599.
(8) Ndung’u, C. N.; Kaniu, M. I.; Wanjohi, J. M. Optimization of Diffuse Reflectance Spectroscopy Measurements for Direct and Rapid Screening of Pesticides: A Case Study of Spinach. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2022, 280, 121556.
(9) Meepagala, K. M.; Osbrink, W.; Burandt, C.; Lax, A.; Duke, S. O. Natural-Product-Based Chromenes as a Novel Class of Potential Termiticides. Pest Management Science 2011, 67 (11), 1446–1450.
(10) Reilly, T. J.; Smalling, K. L.; Orlando, J. L.; Kuivila, K. M. Occurrence of Boscalid and Other Selected Fungicides in Surface Water and Groundwater in Three Targeted Use Areas in the United States. Chemosphere 2012, 89 (3), 228–234.
(11) Rodrigues, E. T.; Lopes, I.; Pardal, M. Â. Occurrence, Fate and Effects of Azoxystrobin in Aquatic Ecosystems: A Review. Environment International 2013, 53, 18–28.
(12) Hao, G.; Yang, G. Pest Control: Risks of Biochemical Pesticides. Science 2013, 342 (6160), 799–799.
(13) Alavanja M. C. R.; Hofmann J. N.; Lynch C. F.; Hines C. J.; Barry K. H.; Barker J.; Buckman D. W.; Thomas K.; Sandler D. P.; Hoppin J. A.; Koutros S.; Andreotti G.; Lubin J. H.; Blair A.; Freeman L. E. B. Non-Hodgkin Lymphoma Risk and Insecticide, Fungicide and Fumigant Use in the Agricultural Health Study. PLOS ONE 2014, 9 (10), e109332.
(14) Alavanja, M. C. R.; Dosemeci, M.; Samanic, C.; Lubin, J.; Lynch, C. F.; Knott, C.; Barker, J.; Hoppin, J. A.; Sandler, D. P.; Coble, J.; Thomas, K.; Blair, A. Pesticides and Lung Cancer Risk in the Agricultural Health Study Cohort. American Journal of Epidemiology 2004, 160 (9), 876–885.
(15) Mostafalou, S.; Abdollahi, M. Pesticides: An Update of Human Exposure and Toxicity. Arch Toxicol 2017, 91 (2), 549–599.
(16) Kamel, F.; Hoppin, J. A. Association of Pesticide Exposure with Neurologic Dysfunction and Disease. Environmental Health Perspectives 2004, 112 (9), 950–958.
(17) Samsidar, A.; Siddiquee, S.; Shaarani, S. M. A Review of Extraction, Analytical and Advanced Methods for Determination of Pesticides in Environment and Foodstuffs. Trends in Food Science & Technology 2018, 71, 188–201.
(18) EU Pesticides Database. https://food.ec.europa.eu/plants/pesticides/eu-pesticides-database_en (accessed 2023-05-16).
(19) Botitsi, H. V.; Garbis, S. D.; Economou, A.; Tsipi, D. F. Current Mass Spectrometry Strategies for the Analysis of Pesticides and Their Metabolites in Food and Water Matrices. Mass Spectrometry Reviews 2011, 30 (5), 907–939.
(20) Wilkowska, A.; Biziuk, M. Determination of Pesticide Residues in Food Matrices Using the QuEChERS Methodology. Food Chemistry 2011, 125 (3), 803–812.
(21) Sapozhnikova, Y. Evaluation of Low-Pressure Gas Chromatography–Tandem Mass Spectrometry Method for the Analysis of >140 Pesticides in Fish. J. Agric. Food Chem. 2014, 62 (17), 3684–3689.
(22) Jin, L.; Hao, Z.; Zheng, Q.; Chen, H.; Zhu, L.; Wang, C.; Liu, X.; Lu, C. A Facile Microfluidic Paper-Based Analytical Device for Acetylcholinesterase Inhibition Assay Utilizing Organic Solvent Extraction in Rapid Detection of Pesticide Residues in Food. Analytica Chimica Acta 2020, 1100, 215–224.
(23) Wu, S.; Li, D.; Gao, Z.; Wang, J. Controlled Etching of Gold Nanorods by the Au(III)-CTAB Complex, and Its Application to Semi-Quantitative Visual Determination of Organophosphorus Pesticides. Microchim Acta 2017, 184 (11), 4383–4391.
(24) Zhai, R.; Chen, G.; Liu, G.; Huang, X.; Xu, X.; Li, L.; Zhang, Y.; Wang, J.; Jin, M.; Xu, D.; Abd El-Aty, A. M. Enzyme Inhibition Methods Based on Au Nanomaterials for Rapid Detection of Organophosphorus Pesticides in Agricultural and Environmental Samples: A Review. Journal of Advanced Research 2022, 37, 61–74.
(25) Wu, S.; Li, D.; Wang, J.; Zhao, Y.; Dong, S.; Wang, X. Gold Nanoparticles Dissolution Based Colorimetric Method for Highly Sensitive Detection of Organophosphate Pesticides. Sensors and Actuators B: Chemical 2017, 238, 427–433.
(26) Shan, G.; Huang, W.; Gee, S. J.; Buchholz, B. A.; Vogel, J. S.; Hammock, B. D. Isotope-Labeled Immunoassays without Radiation Waste. Proceedings of the National Academy of Sciences 2000, 97 (6), 2445–2449.
(27) Yang, X.; Gu, Y.; Wu, S.; Feng, L.; Xie, F. Research on a Rapid Detection Method of Pesticide Residues in Milk by Enzyme Inhibition. E3S Web Conf. 2019, 79, 03013. https://doi.org/10.1051/e3sconf/20197903013.
(28) Qing, Z.; Li, Y.; Li, Y.; Luo, G.; Hu, J.; Zou, Z.; Lei, Y.; Liu, J.; Yang, R. Thiol-Suppressed I2-Etching of AuNRs: Acetylcholinesterase-Mediated Colorimetric Detection of Organophosphorus Pesticides. Microchim Acta 2020, 187 (9), 497.
(29) Raman, C. V.; Krishnan, K. S. A New Type of Secondary Radiation. Nature 1928, 121 (3048), 501–502.
(30) Parvez, S.; Venkataraman, C.; Mukherji, S. A Review on Advantages of Implementing Luminescence Inhibition Test (Vibrio Fischeri) for Acute Toxicity Prediction of Chemicals. Environment International 2006, 32 (2), 265–268.
(31) Hermann, T.; Patel, D. J. Adaptive Recognition by Nucleic Acid Aptamers. Science 2000, 287 (5454), 820–825.
(32) Kumar, J.; D’Souza, S. F. An Optical Microbial Biosensor for Detection of Methyl Parathion Using Sphingomonas Sp. Immobilized on Microplate as a Reusable Biocomponent. Biosensors and Bioelectronics 2010, 26 (4), 1292–1296.
(33) Liu, X.; Zhang, X. Aptamer-Based Technology for Food Analysis. Appl Biochem Biotechnol 2015, 175 (1), 603–624.
(34) Reynoso, E. C.; Torres, E.; Bettazzi, F.; Palchetti, I. Trends and Perspectives in Immunosensors for Determination of Currently-Used Pesticides: The Case of Glyphosate, Organophosphates, and Neonicotinoids. Biosensors 2019, 9 (1), 20.
(35) Rizzato, M. L.; Picone, A. L.; Romano, R. M. A Facile Method for In-Situ Detection of Thiabendazole Residues in Fruit and Vegetable Peels Using Surface-Enhanced Raman Spectroscopy. Talanta Open 2023, 7, 100223.
(36) Liu, C.; Xu, D.; Dong, X.; Huang, Q. A Review: Research Progress of SERS-Based Sensors for Agricultural Applications. Trends in Food Science & Technology 2022, 128, 90–101.
(37) Zhang, D.; Pu, H.; Huang, L.; Sun, D.-W. Advances in Flexible Surface-Enhanced Raman Scattering (SERS) Substrates for Nondestructive Food Detection: Fundamentals and Recent Applications. Trends in Food Science & Technology 2021, 109, 690–701.
(38) Dai, X.; Xue, D.; Liu, X.; Gu, C.; Jiang, T. An Adhesive SERS Substrate Based on a Stretched Silver Nanowire-Tape for the in Situ Multicomponent Analysis of Pesticide Residues. Analytical Methods 2023, 15 (10), 1261–1273.
(39) Li, R.; Wang, Z.; Zhang, Z.; Sun, X.; Hu, Y.; Wang, H.; Chen, K.; Liu, Q.; Chen, M.; Chen, X. Deep Learning-Based Multicapturer SERS Platform on Plasmonic Nanocube Metasurfaces for Multiplex Detection of Organophosphorus Pesticides in Environmental Water. Anal. Chem. 2022, 94 (46), 16006–16014.
(40) Xu, M.-L.; Gao, Y.; Han, X.-X.; Zhao, B. Innovative Application of SERS in Food Quality and Safety: A Brief Review of Recent Trends. Foods 2022, 11 (14), 2097.
(41) Li, R.; Chen, M.; Yang, H.; Hao, N.; Liu, Q.; Peng, M.; Wang, L.; Hu, Y.; Chen, X. Simultaneous In Situ Extraction and Self-Assembly of Plasmonic Colloidal Gold Superparticles for SERS Detection of Organochlorine Pesticides in Water. Anal. Chem. 2021, 93 (10), 4657–4665.
(42) Nilghaz, A.; Mahdi Mousavi, S.; Amiri, A.; Tian, J.; Cao, R.; Wang, X. Surface-Enhanced Raman Spectroscopy Substrates for Food Safety and Quality Analysis. J. Agric. Food Chem. 2022, 70 (18), 5463–5476.
(43) Wang, S.; Hao, Q.; Zhao, Y.; Chen, Y. Two-Dimensional Printed AgNPs@Paper Swab for SERS Screening of Pesticide Residues on Apples and Pears. J. Agric. Food Chem. 2023, 71 (12), 4982–4989.
(44) Li, H.; Luo, X.; Haruna, S. A.; Zhou, W.; Chen, Q. Rapid Detection of Thiabendazole in Food Using SERS Coupled with Flower-like AgNPs and PSL-Based Variable Selection Algorithms. Journal of Food Composition and Analysis 2023, 115, 105016.
(45) Yang, J.; Zhang, D.; Wang, L.; Long, N.; Zhang, M.; Zhang, L. An Electrochemical Method for High Sensitive Detection of Thiabendazole and Its Interaction with Human Serum Albumin. Food Anal. Methods 2015, 8 (2), 507–514.
(46) Cheng, F.; Liao, X.; Huang, Z.; Xu, L.; Zhou, Y.; Zhang, X. Highly Sensitive Detection of Thiabendazole Residues in Food Samples Based on Multiwall Carbon Nanotubes Decorated Two-Dimensional Layered Molybdenum Disulfide. Food Anal. Methods 2020, 13 (3), 811–822.
(47) Navarro, M. V.; Cabezón, M. A.; Damiani, P. C. Simultaneous Determination of Pesticides in Fruits by Using Second-Order Fluorescence Data Resolved by Unfolded Partial Least-Squares Coupled to Residual Bilinearization. Journal of Chemistry 2018, 2018, e3217465.
(48) Gardner, M. S.; Voyksner, R. D.; Haney, C. A. Analysis of Pesticides by LC−Electrospray-MS with Postcolumn Removal of Nonvolatile Buffers. Anal. Chem. 2000, 72 (19), 4659–4666.
(49) Wang, J.; Leung, D. Applications of Ultra-Performance Liquid Chromatography Electrospray Ionization Quadrupole Time-of-Flight Mass Spectrometry on Analysis of 138 Pesticides in Fruit- and Vegetable-Based Infant Foods. J. Agric. Food Chem. 2009, 57 (6), 2162–2173.
(50) Wang, J.; Cheung, W.; Grant, D. Determination of Pesticides in Apple-Based Infant Foods Using Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry. J. Agric. Food Chem. 2005, 53 (3), 528–537.
(51) Mandal, M. K.; Ozawa, T.; Saha, S.; Rahman, Md. M.; Iwasa, M.; Shida, Y.; Nonami, H.; Hiraoka, K. Development of Sheath-Flow Probe Electrospray Ionization Mass Spectrometry and Its Application to Real Time Pesticide Analysis. J. Agric. Food Chem. 2013, 61 (33), 7889–7895.
(52) Snyder, A. P. Electrospray: A Popular Ionization Technique for Mass Spectrometry. In Biochemical and Biotechnological Applications of Electrospray Ionization Mass Spectrometry; ACS Symposium Series; American Chemical Society, 1996; Vol. 619, pp 1–20.
(53) Zhang, K.; Wong, J. W.; Yang, P.; Hayward, D. G.; Sakuma, T.; Zou, Y.; Schreiber, A.; Borton, C.; Nguyen, T.-V.; Kaushik, B.; Oulkar, D. Protocol for an Electrospray Ionization Tandem Mass Spectral Product Ion Library: Development and Application for Identification of 240 Pesticides in Foods. Anal. Chem. 2012, 84 (13), 5677–5684.
(54) Yu, W.; Zhang, G.; Wu, D.; Guo, L.; Huang, X.; Ning, F.; Liu, Y.; Luo, L. Identification of the Botanical Origins of Honey Based on Nanoliter Electrospray Ionization Mass Spectrometry. Food Chemistry 2023, 418, 135976.
(55) Alberici, R. M.; Simas, R. C.; Sanvido, G. B.; Romão, W.; Lalli, P. M.; Benassi, M.; Cunha, I. B. S.; Eberlin, M. N. Ambient Mass Spectrometry: Bringing MS into the “Real World.” Anal Bioanal Chem 2010, 398 (1), 265–294.
(56) Cooks, R. G.; Ouyang, Z.; Takats, Z.; Wiseman, J. M. Ambient Mass Spectrometry. Science 2006, 311 (5767), 1566–1570.
(57) Harris, G. A.; Galhena, A. S.; Fernández, F. M. Ambient Sampling/Ionization Mass Spectrometry: Applications and Current Trends. Anal. Chem. 2011, 83 (12), 4508–4538.
(58) Huang, M.-Z.; Yuan, C.-H.; Cheng, S.-C.; Cho, Y.-T.; Shiea, J. Ambient Ionization Mass Spectrometry. Annual Review of Analytical Chemistry 2010, 3 (1), 43–65. https://doi.org/10.1146/annurev.anchem.111808.073702.
(59) Huang, M.-Z.; Cheng, S.-C.; Cho, Y.-T.; Shiea, J. Ambient Ionization Mass Spectrometry: A Tutorial. Analytica Chimica Acta 2011, 702 (1), 1–15.
(60) Van Berkel, G. J.; Pasilis, S. P.; Ovchinnikova, O. Established and Emerging Atmospheric Pressure Surface Sampling/Ionization Techniques for Mass Spectrometry. Journal of Mass Spectrometry 2008, 43 (9), 1161–1180.
(61) Feider, C. L.; Krieger, A.; DeHoog, R. J.; Eberlin, L. S. Ambient Ionization Mass Spectrometry: Recent Developments and Applications. Anal. Chem. 2019, 91 (7), 4266–4290.
(62) Arigò, A.; Famiglini, G.; Marittimo, N.; Agostini, M.; Renzoni, C.; Palma, P.; Cappiello, A. Extractive-Liquid Sampling Electron Ionization-Mass Spectrometry (E-LEI-MS): A New Powerful Combination for Direct Analysis. Sci Rep 2023, 13 (1), 6429.
(63) Venter, A. R.; Douglass, K. A.; Shelley, J. T.; Hasman, G.; Honarvar, E. Mechanisms of Real-Time, Proximal Sample Processing during Ambient Ionization Mass Spectrometry. Anal. Chem. 2014, 86 (1), 233–249.
(64) Takáts, Z.; Wiseman, J. M.; Gologan, B.; Cooks, R. G. Mass Spectrometry Sampling Under Ambient Conditions with Desorption Electrospray Ionization. Science 2004, 306 (5695), 471–473.
(65) Lee, C.-C.; Chang, D.-Y.; Jeng, J.; Shiea, J. Generating Multiply Charged Protein Ions via Two-Step Electrospray Ionization Mass Spectrometry. Journal of Mass Spectrometry 2002, 37 (1), 115–117.
(66) Shiea, J.; Chang, D.-Y.; Lin, C.-H.; Jiang, S.-J. Generating Multiply Charged Protein Ions by Ultrasonic Nebulization/Multiple Channel-Electrospray Ionization Mass Spectrometry. Anal. Chem. 2001, 73 (20), 4983–4987.
(67) Wu, J.; Hughes, C. S.; Picard, P.; Letarte, S.; Gaudreault, M.; Lévesque, J.-F.; Nicoll-Griffith, D. A.; Bateman, K. P. High-Throughput Cytochrome P450 Inhibition Assays Using Laser Diode Thermal Desorption-Atmospheric Pressure Chemical Ionization-Tandem Mass Spectrometry. Anal. Chem. 2007, 79 (12), 4657–4665.
(68) Cheng, S.-C.; Cheng, T.-L.; Chang, H.-C.; Shiea, J. Using Laser-Induced Acoustic Desorption/Electrospray Ionization Mass Spectrometry To Characterize Small Organic and Large Biological Compounds in the Solid State and in Solution Under Ambient Conditions. Anal. Chem. 2009, 81 (3), 868–874.
(69) Jorabchi, K.; Hanold, K.; Syage, J. Ambient Analysis by Thermal Desorption Atmospheric Pressure Photoionization. Anal Bioanal Chem 2013, 405 (22), 7011–7018.
(70) Huang, M.-Z.; Zhou, C.-C.; Liu, D.-L.; Jhang, S.-S.; Cheng, S.-C.; Shiea, J. Rapid Characterization of Chemical Compounds in Liquid and Solid States Using Thermal Desorption Electrospray Ionization Mass Spectrometry. Anal. Chem. 2013, 85 (19), 8956–8963.
(71) Sleeman, R.; Burton, I. F. A.; Carter, J. F.; Roberts, D. J. Rapid Screening of Banknotes for the Presence of Controlled Substances by Thermal Desorption Atmospheric Pressure Chemical Ionisation Tandem Mass Spectrometry. Analyst 1999, 124 (2), 103–108.
(72) Santos, A. M. S.; Faria, R. C.; Pereira, I.; de Lima, L. A. S.; Leal, C. M.; Nascimento, A. R.; Simas, R. C.; Lima, N. M.; Vaz, B. G. Paper Spray Ionization Mass Spectrometry Applied for Quantification of Pesticides and Discrimination from Tomato Varieties (Solanum Lycopersicum). Journal of Food Composition and Analysis 2022, 109, 104467.
(73) Kunpatee, K.; Kalcher, K.; Chailapakul, O.; Chaiyo, S.; Samphao, A. A Paper Chromatographic-Based Electrochemical Analytical Device for the Separation and Simultaneous Detection of Carbofuran and Carbaryl Pesticides. Sensors and Actuators B: Chemical 2023, 377, 133116.
(74) Soares, D. de A.; Pereira, I.; Sousa, J. C. P.; Bernardo, R. A.; Simas, R. C.; Vaz, B. G.; Chaves, A. R. Bisphenol Determination in UHT Milk and Packaging by Paper Spray Ionization Mass Spectrometry. Food Chemistry 2023, 400, 134014.
(75) Zheng, Y.; Huang, Y.; Zuo, Q.; Zhang, Y.; Wu, Y.; Zhang, Z. On-Demand Portable Paper-Based Electrospray Ionization Mass Spectrometry for High-Sensitivity Analysis of Complex Samples. Anal. Chem. 2023, 95 (14), 6163–6171.
(76) Evard, H.; Kruve, A.; Lõhmus, R.; Leito, I. Paper Spray Ionization Mass Spectrometry: Study of a Method for Fast-Screening Analysis of Pesticides in Fruits and Vegetables. Journal of Food Composition and Analysis 2015, 41, 221–225.
(77) Moura, A. C. M.; Lago, I. N.; Cardoso, C. F.; dos Reis Nascimento, A.; Pereira, I.; Vaz, B. G. Rapid Monitoring of Pesticides in Tomatoes (Solanum Lycopersicum L.) during Pre-Harvest Intervals by Paper Spray Ionization Mass Spectrometry. Food Chemistry 2020, 310, 125938.
(78) Basuri, P.; Baidya, A.; Pradeep, T. Sub-Parts-per-Trillion Level Detection of Analytes by Superhydrophobic Preconcentration Paper Spray Ionization Mass Spectrometry (SHPPSI MS). Anal. Chem. 2019, 91 (11), 7118–7124.
(79) Zhou, W.; Nazdrajić, E.; Pawliszyn, J. Rapid Screening and Quantitation of Drugs of Abuse by Both Positive and Negative Modes via Coated Blade Spray–Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2022, 33 (7), 1187–1193.
(80) Kasperkiewicz, A.; Gómez-Ríos, G. A.; Hein, D.; Pawliszyn, J. Breaching the 10 Second Barrier of Total Analysis Time for Complex Matrices via Automated Coated Blade Spray. Anal. Chem. 2019, 91 (20), 13039–13046.
(81) Zhou, W.; Pawliszyn, J. Coated Blade Spray with a Barrier: Improving Negative Electrospray Ionization and Sample Preparation. Anal. Chem. 2022, 94 (45), 15879–15886.
(82) Kasperkiewicz, A.; Pawliszyn, J. Multi-Class Pesticide Analysis in Cannabis Oil Using Coated Blade Spray and Solid-Phase Microextraction with Liquid Chromatography Coupled to Mass Spectrometry. Talanta 2021, 225, 122036.
(83) Kasperkiewicz, A.; Pawliszyn, J. Multiresidue Pesticide Quantitation in Multiple Fruit Matrices via Automated Coated Blade Spray and Liquid Chromatography Coupled to Triple Quadrupole Mass Spectrometry. Food Chemistry 2021, 339, 127815.
(84) Poole, J. J.; Gómez-Ríos, G. A.; Boyaci, E.; Reyes-Garcés, N.; Pawliszyn, J. Rapid and Concomitant Analysis of Pharmaceuticals in Treated Wastewater by Coated Blade Spray Mass Spectrometry. Environ. Sci. Technol. 2017, 51 (21), 12566–12572.
(85) Tascon, M.; Gómez-Ríos, G. A.; Reyes-Garcés, N.; Poole, J.; Boyacı, E.; Pawliszyn, J. High-Throughput Screening and Quantitation of Target Compounds in Biofluids by Coated Blade Spray-Mass Spectrometry. Anal. Chem. 2017, 89 (16), 8421–8428.
(86) Morato, N. M.; Pirro, V.; Fedick, P. W.; Cooks, R. G. Quantitative Swab Touch Spray Mass Spectrometry for Oral Fluid Drug Testing. Anal. Chem. 2019, 91 (11), 7450–7457.
(87) Pirro, V.; Jarmusch, A. K.; Vincenti, M.; Cooks, R. G. Direct Drug Analysis from Oral Fluid Using Medical Swab Touch Spray Mass Spectrometry. Analytica Chimica Acta 2015, 861, 47–54.
(88) Fedick, P. W.; Bain, R. M. Swab Touch Spray Mass Spectrometry for Rapid Analysis of Organic Gunshot Residue from Human Hand and Various Surfaces Using Commercial and Fieldable Mass Spectrometry Systems. Forensic Chemistry 2017, 5, 53–57.
(89) Jeng, J.-Y.; Jiang, Z.-H.; Cho, Y.-T.; Su, H.; Lee, C.-W.; Shiea, J. Obtaining Molecular Imagings of Pesticide Residues on Strawberry Surfaces with Probe Sampling Followed by Ambient Ionization Mass Spectrometric Analysis. Journal of Mass Spectrometry 2021, 56 (4), e4644.
(90) Cheng, S.-C.; Tsai, Y.-D.; Lee, C.-W.; Chen, B.-H.; Shiea, J. Direct and Rapid Characterization of Illicit Drugs in Adulterated Samples Using Thermal Desorption Electrospray Ionization Mass Spectrometry. Journal of Food and Drug Analysis 2019, 27 (2), 451–459.
(91) Cho, Y.-T.; Su, H.; Wu, C.-Y.; Huang, T.-L.; Jeng, J.; Huang, M.-Z.; Wu, D.-C.; Shiea, J. Molecular Mapping of Sebaceous Squalene by Ambient Mass Spectrometry. Anal. Chem. 2021, 93 (49), 16608–16617.
(92) Chen, K.-H.; Li, Y.-C.; Sheu, F.; Lin, C.-H. Rapid Screening and Determination of Pesticides on Lemon Surfaces Using the Paper-Spray Mass Spectrometry Integrated via Thermal Desorption Probe. Food Chemistry 2021, 363, 130305.
(93) Liou, Y.-W.; Wang, S.-H.; Hsu, C.-H.; Hsu, Y.-T.; Chen, C.-H.; Chen, C.-C.; Lin, C.-H. Rapid On-Line Microextraction Method for the Analysis of Glyphosate in Soy and Pepper Based on Fiber-Spray/Mass Spectrometry. International Journal of Mass Spectrometry 2018, 430, 104–109.
(94) Gjelstad, A.; Rasmussen, K. E.; Pedersen-Bjergaard, S. 2.23 - Hollow Fiber Liquid-Phase Microextraction. In Comprehensive Sampling and Sample Preparation; Pawliszyn, J., Ed.; Academic Press: Oxford, 2012; pp 475–496.
(95) Li, P.; He, M.; Chen, B.; Hu, B. Automated Dynamic Hollow Fiber Liquid–Liquid–Liquid Microextraction Combined with Capillary Electrophoresis for Speciation of Mercury in Biological and Environmental Samples. Journal of Chromatography A 2015, 1415, 48–56.
(96) Asensio-Ramos, M.; Ravelo-Pérez, L. M.; González-Curbelo, M. Á.; Hernández-Borges, J. Liquid Phase Microextraction Applications in Food Analysis. Journal of Chromatography A 2011, 1218 (42), 7415–7437.
(97) Hu, B.; Yao, Z.-P. Electrospray Ionization Mass Spectrometry with Wooden Tips: A Review. Analytica Chimica Acta 2022, 1209, 339136.
(98) Chen, H.-K.; Lin, C.-H.; Liu, J.-T.; Lin, C.-H. Electrospray Ionization Using a Bamboo Pen Nib. International Journal of Mass Spectrometry 2013, 356, 37–40.
(99) Hsu, Y.-T.; Lee, W.-Z.; Lin, C.-H. Insights into the Chemistry and Structure of Iron Gall Ink Based on “Two-Step” Bamboo Nib-Spray/Mass Spectrometry. International Journal of Mass Spectrometry 2020, 451, 116325.
(100)Ion Trap Mass Spectrometry. Chem. Eng. News Archive 1991, 69 (12), 26–41.