簡易檢索 / 詳目顯示

研究生: 李佳憲
論文名稱: 超薄氧化鈷膜在銥(111)表面上的製備與物性探討
Investigations of preparation methods and properties of ultrathin CoO layers on Ir(111)
指導教授: 蔡志申
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 267
中文關鍵詞: 超高真空系統交換偏移歐傑電子能譜儀表面磁光柯爾效應
英文關鍵詞: ultrahigh vacuum, exchange bias, Auger electron spectroscopy, surface magneto-optic Kerr effect
論文種類: 學術論文
相關次數: 點閱:200下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文內容將探討Co/CoO/Ir(111)超薄膜的薄膜成長與組成、表面磁性以及薄膜表面結構變化,並利用歐傑電子能譜儀、深度組成分析、表面磁光柯爾效應、低能量電子繞射等方法進行上述的研究。從薄膜成長與深度組成分析得知,在一定層數下的CoO會形成良好的化合狀態;將薄膜進行熱退火步驟後,O與Co的歐傑電子訊號比值會下降。CoO/Ir(111)超薄膜表面鍍上Co後,形成Co/CoO介面,零場冷卻後利用表面磁光柯爾效應儀測量磁滯曲線,發現隨著溫度的降低,矯頑力有增加的趨勢,但磁滯曲線呈現對稱的情況;在場冷卻下的表面磁性分析中,發現除了矯頑力增加,並且有交換偏移現象發生;從薄膜表面結構的觀察中,顯示出其結構週期性變強。經由系列化研究超薄膜系統在不同膜厚下的行為,可以得到鐵磁層與反鐵磁層間交換耦合的最佳條件。

    The fabrications of Co/CoO/Ir(111) ultrathin films and their properties have studied using Auger electron spectroscopy (AES), depth profiling, surface magneto-optic Kerr effect (SMOKE) and low-energy electron diffraction (LEED) techniques. From the analysis of growth mode and depth profiling, CoO/Ir(111) shows good compositional quality. After annealing treatments, Auger signal ratio of O/Co decreases which results from desorption of fractional oxygen. The Co/CoO interface is formed after post-deposition of Co overlayer on CoO/Ir(111). Both enhancement of coercivity and shift of hysteresis loop were observed after cooling the specimens in a magnetic filed. These evidences show the formation of exchange bias interfaces. In addition the periodic ordering is stronger as revealed from the LEED measurements. From the systematical investigations, the optimal condition for the formation of strong exchange bias in the Co/CoO/Ir(111) system is achieved.

    第一章 緒論 ........................................1 第二章 基本原理 .....................................5 2-1 磁性物質 2-1-1 磁性物質的種類 2-1-2 鐵磁性物質的特性 2-1-3 超順磁效應 2-2 磁異向性理論 2-3 交換偏移(exchange bias) 2-3-1 交換偏移的現象 2-3-2 薄膜材料的交換偏移 2-4 薄膜成長理論 2-5 表面原子鍵結 2-6 氧吸附及氧化現象 2-6-1 氧與鈷的化合與吸附 2-6-2 能譜線的偏移與電負度 2-6-3 電子親和力 第三章 儀器設備與工作原理 ..............................35 3-1 超高真空系統(ultrahigh vacuum, UHV) 3-1-1 真空的定義 3-1-2 真空材料與封合 3-1-3 超高真空系統裝置 3-1-4 達到超高真空的步驟 3-2 歐傑電子能譜(Auger electron spectroscopy) 3-2-1 歐傑電子產生機制 3-2-2 歐傑電子能譜儀裝置 3-3 表面磁光柯爾效應(surface magneto-optic Kerr effect) 3-3-1 磁光柯爾效應理論 3-3-2 磁光柯爾效應儀器裝置 3-3-3 磁光柯爾效應儀器架設 3-3-4 磁光柯爾效應儀器的操作流程 3-4 低能量電子繞射儀(low-energy electron diffraction) 3-4-1 反商晶格與電子繞射 3-4-2 低能量電子繞射儀的工作方式 3-4-3 低能量電子繞射所傳達的表面訊息 3-4-4 低能量電子繞射儀的種類 3-4-4-1 前視低能量電子繞射儀(front-view LEED) 3-4-4-2 後視低能量電子繞射儀(rear-view LEED) 3-4-5 本實驗室樣品乾淨的Ir(111)低能量電子繞射圖形 3-5 反射式高能量電子繞射(reflection high energy electron diffraction) 3-5-1 反射式高能量電子繞射儀原理 3-5-2 反射式高能量電子繞射儀之配置 第四章 實驗結果與討論 .................................94 4-1 鈷薄膜在Ir(111)上的成長分析 4-2 在X ML CoO/Ir(111)下,CoO薄膜成長與離子濺射分析 4-2-1 在4 ML CoO/Ir(111)下的薄膜成長與離子濺射分析 4-2-2 在3 ML CoO/Ir(111)下的薄膜成長與離子濺射分析 4-2-3 在2 ML CoO/Ir(111)下的薄膜成長與離子濺射分析 4-2-4 在1 ML CoO/Ir(111)下的薄膜成長與離子濺射分析 4-2-5 在0.5 ML CoO/Ir(111)下的薄膜成長與離子濺射分析 4-2-6 綜合討論X ML CoO/Ir(111)的薄膜成長與離子濺射 分析 4-2-7 在1 ML Co/Ir(111)下,Co的薄膜成長與離子濺射分析 4-2-8 在X Langmuir O/Ir(111)下,O的薄膜成長分析 4-3 X ML Co/2 ML CoO/Ir(111)薄膜成長組成與表面磁性分析 4-3-1 X ML Co/2 ML CoO/Ir(111)薄膜成長組成分析   4-3-2 X ML Co/2 ML CoO/Ir(111)表面磁性分析 4-3-3 綜合討論X ML Co/2 ML CoO/Ir(111)數據分析 4-4 X ML Co/4 ML CoO/Ir(111)薄膜成長組成與表面磁性分析   4-4-1 X ML Co/4 ML CoO/Ir(111)薄膜成長組成分析   4-4-2 X ML Co/4 ML CoO/Ir(111)表面磁性分析   4-4-3 綜合討論X ML Co/4 ML CoO/Ir(111)數據分析 4-5 X ML Co/Y ML CoO/Ir(111)低能量電子繞射分析 4-5-1 X ML Co/2 ML CoO/Ir(111)低能量電子繞射分析 4-5-2 X ML Co/4 ML CoO/Ir(111)低能量電子繞射分析 第五章 結論 .........................................260 參考資料 ........................................263

    [1]胡裕民、黃榮俊,物理雙月刊,二十二卷六期,P.552 (2000年12月)
    [2]P. Andreyev, 電子工程專輯,P.125 (2005年11月)
    [3]B. Dieny, V.S. Speriosu et al., Phys. Rev. B 43, 1297
    (1991)
    [4]L. M. Khriplovich, E. V. Kholopov, and I. E. Paukov, J.
    Chem. Thermodyn. 14, 207 (1982)
    [5]W.H.Meiklejohn, C.P.Bean, Phy. Rev. 102, 1413 (1956)
    [6]J. Nogués, I. K. Schuller, J, Magn. Magn. Mater. 192,
    203 (1999)
    [7]A.E. Berkowitz, Kentaro Takano, J. Magn. Magn. Mater.
    200, 552 (1999)
    [8]M. Lederman, IEEE Trans. Magn. 35, 794 (1999)
    [9]A. J. Devasahayan and M. K. Kryder, IEEE Trans. Magn.
    35, 649 (1999)
    [10]陳裕善,國立中正大學物理所碩士論文 (2005)
    [11]鄭文源,私立東海大學物理所碩士論文 (2004).
    [12]C. Kittel, Introduction of Solid State Phys. , 7thed,
    John Wiley& Sons inc., New York (1997)
    [13]楊正旭,私立輔仁大學碩士論文 (1999)
    [14]B. D. Cullity, Introduction to Magnetic Materials,
    Addison Wesley, New York (1972)
    [15]R. C. O'Handley, Modern Magnetic. Materials, John Wiley
    & Sons inc., New York (2000)
    [16]聶亨芸,國立清華大學碩士論文 (2002)
    [17]D. K. Cheng, Field and Wave Electromagnetics 2/e,3rd
    ed., Addison-Wesley, New York (1989)
    [18]D.J. Griffiths, Introduction to Electrodynamics,
    Prentice Hall, New York (1981)
    [19]H. von Kanel, Mater. Sci. Rep. 8, 193 (1992)
    [20]何慧瑩,國立台灣師範大學物理所碩士論文 (1998)
    [21]J. A. C. Bland and B. Heinrich, Ultrathin Mag.
    Structure I & II, Springer-Verlag, Berlin (1994)
    [22]M. T. Johnson, P. J. H. Bloemen, F. J. A den Broeder,
    and J. J de Vrist, Rep. Prog. Phys. 59, 1409 (1996)
    [23]P. Beauvillain, A. Bounouh, C. Chappert, R. Mégy, S.
    Ould-Mahfoud, J. P. Renard, and P. Veillet, J. Appl.
    Phys. 76, 6078 (1994)
    [24]宛德福,馬興隆,磁性物理學,電子科技大學出版社,大陸 (1994)
    [25]張治平,私立輔仁大學碩士論文 (1996)
    [26]M. I. Darby and E. D. Isaac, IEEE Transaction on Mag.,
    10, 259 (1974)
    [27]R. F. Soohoo, Magnetic Thin Films, Harper & Row, New
    York (1965)
    [28]鄭德娟,前瞻磁性技術人培訓班講義,工研院光電師
    [29]W.H. Meiklejohn, J. Appl. Phys. 33, 1328 (1962)
    [30]A. Roth, Vacuum Technology, North-Holland, New York
    (1986)
    [31]C.P. Bean, in: C.A. Neugebauer, J.B. Newkirk,D.A.
    Vermilyea (Eds.), Structure and Properties of Thin
    Films, Wiley, New York, 331 (1960)
    [32]W.H. Meiklejohn, C.P. Bean, Phys. Rev. 105, 904 (1957)
    [33]E.P. Wohlfarth, Adv. Phys. 8, 87 (1959)
    [34]H. Schmid, Cobalt 6, 8 (1960)
    [35]F.S. Luborsky, Electro-Technology, 107, 235 (Sept. 1962)
    [36]J.S. Kouvel, J. Phys. Chem. Sol. 24, 795 (1963)
    [37]N.H. March, P. Lambin, F. Herman, J. Magn. Magn. Mater.
    44, 1 (1984)
    [38]J. F. ó Hanlon, A User´s Guide to Vacuum Technology,
    J. Wiley & Sons inc., New York (1989)
    [39]蔡篤承,私立東海大學碩士論文 (2004)
    [40]薛增泉,吳全德,李浩,薄膜物理,電子工業出版社,大陸 (1991)
    [41]P. J. van der Zaag, Y.Ijiri, J.A. borchers, L. F.
    Feiner, R.M. Wolf, J. M. Gaines, R. W. Erwin, and M. A.
    Verheijen Phys. Rev. Lett. 84, 6102 (2000)
    [42]M. Prutton, Surface Physics, Oxford University Press,
    U.K. (1987)
    [43]C. Su, C.S.Tsai, C.E.Lin, K.H. Chen, J.K. Wang and
    J.C.Lin, Surf. Sci. 445,139 (2000)
    [44]J.B. Pendry, Low Energy Electron Diffraction, Academic
    Press, London (1974)
    [45]劉伊郎、陳恭,物理雙月刊,二十二卷六期,593 (2000年12月)
    [46]黃迪靖,物理雙月刊,二十五卷五期,651 (2003年10月)
    [47]李奇暐,國立中正大學物理所碩士論文 (2006)
    [48]G. Ertl and J. Küppers, Low Energy Electrons and
    Surface Chemistry, 2th ed., VCH, Weinheim (1985)
    [49]D. R. Lide, Handbook of Chemistry and Phys., 83rd ed.,
    Chemical Rubber Publishing Company, England, 257 (2002-
    2003)
    [50]張新政,國立台灣師範大學物理所碩士論文 (2007)
    [51]S. Valeri, A. Borghi, G.C. Gazzadi, and A. di Bona,
    Surf. Sci. 423, 346 (1999)
    [52]蘇青森,真空技術精華,五南圖書出版社 (2004)
    [53]黃正宏,私立東海大學碩士論文 (2004)
    [54]曾騰寬,國立台灣科技大學機械所碩士論文 (2000)
    [55]呂登復,實用真空技術,國興出版,台灣 (1986)
    [56]J. C. Vickerman: Surface Analysis-The Principal
    Techniques, John Wiley & Sons, New York (2002)
    [57]T. W. Haas, J. Grant, and G. J. Dooley, Phys. Rev. B.
    1, 4 (1970)
    [58]UHV Evaporator EFM 3 Instruction Manual, Omicron, Inc.
    (1999)
    [59]UHV Evaporator EFM 3/4, Triple Evaporator EFM3T
    Instruction Manual, Omicron, Inc. (2005)
    [60]李彥龍,私立東海大學物理所碩士論文 (2003)
    [61]30 keV RHEED Power Supply and E-Gun Operation Manual, R- DEC, Co., Ltd. (2007)
    [62]J. D. Jackson: Classical Electro-dynamics, John Wiley &
    Sons, New York, 3rd ed. (1999)
    [63]L. E. Davis, N. C. Macdonald, P. W. Palmberg, G. E.
    Riach, and R. E. Weber, HANDBOOK OF AUGER, 2nd ed.,
    Physical Electronics Industries, Inc., Eden Prairie
    (1976)
    [64]Sputter Ion Source User´s Guide, Omicron, Inc. (1997)
    [65]邱彥霖,私立東海大學碩士論文 (2005)
    [66]王坤池,國立台灣科技大學機械所碩士論文 (2001)
    [67]蔡志申,物理雙月刊,二十五卷五期,P.607 (2003年10月)
    [68]Z. Q. Qiu and S. D. Bader, J. Magn. Magn. Mater. 200,
    664 (1999)
    [69]Z. Q. Qiu, J. Pearson, and S.D. Bader, Phys. Rev. B 45,
    7211 (1992)
    [70]陳俊明,國立台灣師範大學物理所碩士論文 (2007)
    [71]陳信良,國立台灣師範大學物理所碩士論文 (1997)
    [72]國家實驗研究院-儀器科技研究中心,真空技術與應用,全華出版,台
    灣 (2001)
    [73]林思宏,國立台灣師範大學物理所碩士論文 (2003)
    [74]周亞謙,儀器總攬-表面分析儀器 (1998)
    [75]M. Okada, M. Nakamura, K. Moritani, T. Kasai, Surf.
    Sci. 523, 218 (2003)
    [76]W. Braun, Applied RHEED, Reflection High Energy
    Electron Diffraction During Crystal Growth, Springer-
    Verlag, Berlin (1999)
    [77]Dr. John A.Carlisle, PHYS, 550 (2000)
    [78]F. T. Parker, K.Takano, A.E. Berkowitz, Phys. Rev. B
    61, 866 (2000)
    [79]M. S. Selim, Cry. Gro. 265, 115 (2004)
    [80]C.J. Lin, G.L. Gorman, C.H. Lee, R.F.C.Farrow, E.E.
    Marinero, H.V. Do, H. Notarys,and C.J. Chien, J. Magn.
    Magn. Mater. 93,194 (1991)
    [81]楊志信,台灣資訊儲存技術協會會刊第六期,P.30 (2005年5月)
    [82]D. E. Evans, Phys. Educ. 21, 296 (1986)
    [83]A. Borghi, A. di Bona, D. Bisero, S. Valeri, Surf. Sci.
    150, 13 (1999)
    [84]T. Matsuyama and A. Ignatiev, Surf. Sci. 102, 18 (1981)
    [85]S. Valeri, A. Borghi, G.C. Gazzadi, and A. di Bona,
    Surf. Sci. 423, 346 (1999)

    無法下載圖示 本全文未授權公開
    QR CODE