研究生: |
林鉊軒 Lin, Zhao-Xuan |
---|---|
論文名稱: |
鋁金屬有機骨架由非序化中間物轉換至結晶態之研究 Exploration the Transition of Aluminum Metal-Organic Frameworks from Amorphous Intermediate to Crystal |
指導教授: |
林嘉和
Lin, Chia-Her |
口試委員: |
李位仁
Lee, Way-Zen 洪匡聖 Hong, Kuang-Sheng 林嘉和 Lin, Chia-Her |
口試日期: | 2023/05/25 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 95 |
中文關鍵詞: | 雙溶劑置換 、加熱抽真空 、金屬有機骨架 |
英文關鍵詞: | Two solvent exchange, Heat under vacuum, Metal-Organic framework |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202300566 |
論文種類: | 學術論文 |
相關次數: | 點閱:159 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究鋁金屬有機骨架由非序化至有序化的結構轉換過程,在第一部分中,挑選三種不同結構的鋁金屬有機骨架,分別是MIL-53、MIL-100、CAU-10,在不同反應時間下合成非序化的中間產物後,透過雙溶劑置換及加熱抽真空將溶劑脫附並促使結構重排進而探討結晶化的過程,鑑定方式則用粉末X光繞射儀(PXRD)、場發射式掃描電子顯微鏡(FE-SEM)、比表面積及孔隙分析儀及熱重分析儀(TGA)等觀察MOF的結構、形貌及吸附性能等等,結果說明可以透過雙溶劑置換及加熱抽真空促使MOF骨架有序化,在PXRD中可以看到結晶訊號由非序化到有序化,且在較短時間合成的產物也具有與文獻時間合成的產物相似的性能。
第二部分則針對熱/室溫DMF純化動作探討對MOF結構的影響,結果顯示在PXRD沒有表現出明顯的差異性,而經過熱DMF攪拌清洗的產物在比表面積及氮氣吸附量會有所下降,而在場發射式掃描電子顯微鏡可以觀察到MOF在經過熱攪拌清洗會具有尺寸較小的晶體出現,從上述結果顯示出熱DMF會對MOF造成破壞性。
This paper investigates the structural transformation process of aluminum metal-organic frameworks (MOFs) from amorphous to crystal. In the first part of this thesis, three different aluminum-based metal-organic frameworks (MOFs) were selected:MIL-53, MIL-100, and CAU-10. amorphous intermediates were synthesized at different reaction times, and the crystallization process was explored by using two solvent exchange (TOSE) and heat under vacuum (HEVA) to induce solvent removal and structural rearrangement. Powder X-ray diffraction (PXRD), field-emission scanning electron microscopy (FE-SEM), surface area and porosity analyzer, and thermal gravimetric analysis (TGA) were used to analyze the MOF structure, morphology, and adsorption performance. The results showed that MOF frameworks could be ordered through TOSE and HEVA. PXRD reveals the crystalline signals of a transition from amorphous to crystal, Moreover, products synthesized in shorten time exhibited similar properties to those synthesized in the literature for longer times.
In the second part, the effects of thermal/room temperature DMF purification on the MOF structure were investigated. The results showed no significant differences in PXRD analysis. However, the products subjected to thermal DMF stir wash exhibited a decrease in specific surface area and nitrogen adsorption capacity. Field emission scanning electron microscopy revealed the presence of smaller crystals in the MOFs treated with thermal stir wash. These results suggest that thermal DMF treatment can cause structural damage to the MOF.
1. Kitagawa, S., Metal–organic frameworks (MOFs). Chemical Society Reviews 2014, 43, 5415-5418.
2. Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M., Design and synthesis of an exceptionally stable and highly porous metal-organic framework. nature 1999, 402, 276-279.
3. Chen, L.; Luque, R.; Li, Y., Controllable design of tunable nanostructures inside metal–organic frameworks. Chemical Society Reviews 2017, 46, 4614-4630.
4. Mandal, S.; Natarajan, S.; Mani, P.; Pankajakshan, A., Post‐synthetic modification of metal–organic frameworks toward applications. Advanced Functional Materials 2021, 31, 2006291.
5. Chaemchuen, S.; Kabir, N. A.; Zhou, K.; Verpoort, F., Metal–organic frameworks for upgrading biogas via CO 2 adsorption to biogas green energy. Chemical Society Reviews 2013, 42, 9304-9332.
6. Liu, J.; Xia, W.; Mu, W.; Li, P.; Zhao, Y.; Zou, R., New challenge of metal–organic frameworks for high-efficient separation of hydrogen chloride toward clean hydrogen energy. Journal of Materials Chemistry A 2015, 3, 5275-5279.
7. Kapelewski, M. T.; Runčevski, T. e.; Tarver, J. D.; Jiang, H. Z.; Hurst, K. E.; Parilla, P. A.; Ayala, A.; Gennett, T.; FitzGerald, S. A.; Brown, C. M., Record high hydrogen storage capacity in the metal–organic framework Ni2 (m-dobdc) at near-ambient temperatures. Chemistry of Materials 2018, 30, 8179-8189.
8. Wang, C.; Xie, Z.; deKrafft, K. E.; Lin, W., Doping metal–organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. Journal of the American Chemical Society 2011, 133, 13445-13454.
9. Freund, R.; Zaremba, O.; Arnauts, G.; Ameloot, R.; Skorupskii, G.; Dincă, M.; Bavykina, A.; Gascon, J.; Ejsmont, A.; Goscianska, J., The current status of MOF and COF applications. Angewandte Chemie International Edition 2021, 60, 23975-24001.
10. Horike, S.; Shimomura, S.; Kitagawa, S., Soft porous crystals. Nature chemistry 2009, 1, 695-704.
11. Kim, S.-Y.; Kim, A.-R.; Yoon, J. W.; Kim, H.-J.; Bae, Y.-S., Creation of mesoporous defects in a microporous metal-organic framework by an acetic acid-fragmented linker co-assembly and its remarkable effects on methane uptake. Chemical Engineering Journal 2018, 335, 94-100.
12. Zhang, S.-Y.; Jensen, S.; Tan, K.; Wojtas, L.; Roveto, M.; Cure, J.; Thonhauser, T.; Chabal, Y. J.; Zaworotko, M. J., Modulation of Water Vapor Sorption by a Fourth-Generation Metal–Organic Material with a Rigid Framework and Self-Switching Pores. Journal of the American Chemical Society 2018, 140, 12545-12552.
13. Lei, J.; Qian, R.; Ling, P.; Cui, L.; Ju, H., Design and sensing applications of metal–organic framework composites. TrAC Trends in Analytical Chemistry 2014, 58, 71-78.
14. Kitagawa, S., Future porous materials. Accounts of Chemical Research 2017, 50, 514-516.
15. Mondloch, J. E.; Karagiaridi, O.; Farha, O. K.; Hupp, J. T., Activation of metal–organic framework materials. CrystEngComm 2013, 15, 9258-9264.
16. Ma, J.; Kalenak, A. P.; Wong‐Foy, A. G.; Matzger, A. J., Rapid guest exchange and ultra‐low surface tension solvents optimize metal–organic framework activation. Angewandte Chemie 2017, 129, 14810-14813.
17. Chang, G. G.; Ma, X. C.; Zhang, Y. X.; Wang, L. Y.; Tian, G.; Liu, J. W.; Wu, J.; Hu, Z. Y.; Yang, X. Y.; Chen, B., Construction of hierarchical metal–organic frameworks by competitive coordination strategy for highly efficient CO2 conversion. Advanced Materials 2019, 31, 1904969.
18. Koutsianos, A.; Kazimierska, E.; Barron, A. R.; Taddei, M.; Andreoli, E., A new approach to enhancing the CO 2 capture performance of defective UiO-66 via post-synthetic defect exchange. Dalton Transactions 2019, 48, 3349-3359.
19. Taddei, M., When defects turn into virtues: The curious case of zirconium-based metal-organic frameworks. Coordination Chemistry Reviews 2017, 343, 1-24.
20. Wang, Z.; Babucci, M.; Zhang, Y.; Wen, Y.; Peng, L.; Yang, B.; Gates, B. C.; Yang, D., Dialing in catalytic sites on metal organic framework nodes: MIL-53 (Al) and MIL-68 (Al) probed with methanol dehydration catalysis. ACS Applied Materials & Interfaces 2020, 12, 53537-53546.
21. Lo, S.-H.; Feng, L.; Tan, K.; Huang, Z.; Yuan, S.; Wang, K.-Y.; Li, B.-H.; Liu, W.-L.; Day, G. S.; Tao, S., Rapid desolvation-triggered domino lattice rearrangement in a metal–organic framework. Nature Chemistry 2020, 12, 90-97.
22. Fan, W.; Wang, K.-Y.; Welton, C.; Feng, L.; Wang, X.; Liu, X.; Li, Y.; Kang, Z.; Zhou, H.-C.; Wang, R., Aluminum metal–organic frameworks: From structures to applications. Coordination Chemistry Reviews 2023, 489, 215175.
23. Gaab, M.; Trukhan, N.; Maurer, S.; Gummaraju, R.; Müller, U., The progression of Al-based metal-organic frameworks–From academic research to industrial production and applications. Microporous and mesoporous materials 2012, 157, 131-136.
24. Millange, F.; Serre, C.; Férey, G., Synthesis, structure determination and properties of MIL-53as and MIL-53ht: the first Cr iii hybrid inorganic–organic microporous solids: Cr iii (OH)·{O 2 C–C 6 H 4–CO 2}·{HO 2 C–C 6 H 4–CO 2 H} x. Chemical Communications 2002, (8), 822-823.
25. Serre, C.; Millange, F.; Thouvenot, C.; Nogues, M.; Marsolier, G.; Louër, D.; Férey, G., Very large breathing effect in the first nanoporous chromium (III)-Based solids: MIL-53 or CrIII (OH)⊙{O2C− C6H4− CO2}⊙{HO2C− C6H4− CO2H} x⊙ H2O y. Journal of the American chemical society 2002, 124, 13519-13526.
26. Loiseau, T.; Serre, C.; Huguenard, C.; Fink, G.; Taulelle, F.; Henry, M.; Bataille, T.; Férey, G., A rationale for the large breathing of the porous aluminum terephthalate (MIL‐53) upon hydration. Chemistry–A European Journal 2004, 10, 1373-1382.
27. Khan, N. A.; Lee, J. S.; Jeon, J.; Jun, C.-H.; Jhung, S. H., Phase-selective synthesis and phase-conversion of porous aluminum-benzenetricarboxylates with microwave irradiation. Microporous and Mesoporous Materials 2012, 152, 235-239.
28. Volkringer, C.; Popov, D.; Loiseau, T.; Férey, G.; Burghammer, M.; Riekel, C.; Haouas, M.; Taulelle, F., Synthesis, single-crystal X-ray microdiffraction, and NMR characterizations of the giant pore metal-organic framework aluminum trimesate MIL-100. Chemistry of Materials 2009, 21, 5695-5697.
29. Fröhlich, D.; Pantatosaki, E.; Kolokathis, P. D.; Markey, K.; Reinsch, H.; Baumgartner, M.; van der Veen, M. A.; De Vos, D. E.; Stock, N.; Papadopoulos, G. K., Water adsorption behaviour of CAU-10-H: a thorough investigation of its structure–property relationships. Journal of Materials Chemistry A 2016, 4, 11859-11869.
30. Reinsch, H.; van der Veen, M. A.; Gil, B.; Marszalek, B.; Verbiest, T.; De Vos, D.; Stock, N., Structures, sorption characteristics, and nonlinear optical properties of a new series of highly stable aluminum MOFs. Chemistry of Materials 2013, 25, 17-26.
31. Liu, X.; Chee, S. W.; Raj, S.; Sawczyk, M.; Král, P.; Mirsaidov, U., Three-step nucleation of metal–organic framework nanocrystals. Proceedings of the National Academy of Sciences 2021, 118, e2008880118.
32. Tang, J.; Chu, Y.; Li, S.; Xu, J.; Xiong, W.; Wang, Q.; Deng, F., Breathing Effect via Solvent Inclusions on the Linker Rotational Dynamics of Functionalized MIL‐53. Chemistry–A European Journal 2021, 27, 14711-14720.