研究生: |
黎秋蓮 HEIDI LAYSANDRA |
---|---|
論文名稱: |
雜化和無機鹵化物鈣鈦礦的光學研究 Optical studies of hybrid and inorganic halide perovskites |
指導教授: |
劉祥麟
Liu, Hsiang-Lin |
口試委員: |
劉祥麟
Liu, Hsiang-Lin 張明哲 Chang, Ming-Che Sankar, Raman Sankar, Raman 杜昭宏 Du, Chao-Hung 趙宇強 Chao, Yu-Chiang |
口試日期: | 2025/01/07 |
學位類別: |
博士 Doctor |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 英文 |
論文頁數: | 119 |
英文關鍵詞: | CH3NH3PbBr3, (C10H16N)2CuBr4, Cs4MnBi2Cl12, phase stability, optical properties |
研究方法: | 實驗設計法 |
論文種類: | 學術論文 |
相關次數: | 點閱:6 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The growing interest in hybrid and inorganic halide perovskites is driven by significant advancements in their properties, which show great promise for optoelectronic applications. A thorough understanding of their optical and electronic excitations, as well as phase transitions across a wide range of temperatures and energies, is essential for realizing the full potential of hybrid and inorganic halide perovskites-based optoelectronic devices. This thesis examines the vibrational and electronic properties of select hybrid and inorganic halide perovskite compounds: 3D-CH3NH3PbBr3, 2D-(C10H16N)2CuBr4, and 2D-Cs4MnBi2Cl12 single crystals, employing Raman spectroscopy and spectroscopic ellipsometry supported by theoretical calculations. In addition, phase stability and transitions are analyzed using X-ray diffraction (XRD) and thermal gravimetric analysis (TGA).
Room temperature XRD analysis confirms that the CH3NH3PbBr3 exhibits cubic symmetry, with no secondary phases above the background level. Temperature-dependent optical spectra indicate semiconductor behavior, with thermo-optic coefficients (dn/dT) of -4.18 × 10^(-4) (600 nm) and -3.29 × 10^(-4) K^(-1) (1200 nm). Thermal hysteresis observed during cooling-heating cycles, as reflected in the extinction coefficient, suggests a first-order phase transition. Furthermore, optical absorption spectrum at room temperature reveals the band gap of 2.35 eV and the exciton binding energy of 37.2 meV. Additionally, the band gap is found to decrease with decreasing temperature.
Single-crystal XRD (C10H16N)2CuBr4 reveals a single-phase orthorhombic structure, with no structural transition observed between 100 and 300 K. The Raman spectrum identifies 10 phonon modes, primarily associated with the in-plane and out-of-plane vibrations of the C10H16N and CuBr4 octahedra layers. Room temperature optical absorption spectrum indicates a band gap of 2.47 eV and the binding energy of exciton of 107 meV. As the temperature decreases, both the band gap and the exciton peak position shift to higher energies, while the exciton binding energy remains temperature-independent.
Single-crystal XRD analysis reveals that Cs4MnBi2Cl12 crystallizes in a trigonal structure with R3 ̅ symmetry within the temperature range of 130 – 300 K. The Raman spectrum identifies five phonon modes, primarily associated with Mn – Cl and Bi – Cl vibrations. The room temperature optical absorption spectrum exhibits the band gap of 3.28 eV. Additionally, the band gap is observed to decrease with increasing temperature.
The reduction in the band gap with increasing temperature observed in the (C10H16N)2CuBr4 and Cs4MnBi2Cl12 is primarily due to electron-phonon coupling and lattice expansion as well as the weakening of interatomic bonding. This results in a reduction in the energy needed to excite electrons into the conduction band, a behavior commonly observed in semiconductor materials. In contrast, the CH3NH3PbBr3 system exhibits opposite behavior, which can be caused by the reverse ordering of band-edge states. As temperature increases, orbital splitting decreases, causing the valence band maximum (VBM), which is dominantly influenced by anti-bonding orbitals, to shift downward. This is accompanied by spin-orbit coupling (SOC) in the degenerate states of the conduction band. Furthermore, exciton features are observable in the CH3NH3PbBr3 and (C10H16N)2CuBr4 systems, but are less prominent in the Cs4MnBi2Cl12 system. Notably, the exciton binding energy in (C10H16N)2CuBr4 is approximately three times higher than that in CH3NH3PbBr3, which is related to the dimensionality. The reduction in dimensionality enhances exciton binding energy, which is influenced by screening effects that modify the electron-hole Coulomb interaction.
We have presented a detailed analysis of the optical response, electronic excitations, and phase stability and transitions of these materials. These findings provide valuable insights into the vibrational and electronic properties of hybrid and inorganic halide perovskites, which are crucial for the development and fabrication of hybrid and inorganic halide perovskites-based devices for optoelectronic applications across a range of temperatures.
J. Burschka, N. Pellet, S. J. Moon, R. Humohry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, Sequential deposition as a route to high-performance c-sensitized solar cells, Nature 499, 316−319 (2013).
Y. Dong, Y. Zhao, S. Zhang, Y. Dai, L. Liu, Y. Li, And Q. Chen, Recent advances toward practical use of halide perovskite nanocrystals, J. Mater. Chem. A. 6, 21729 – 21746 (2018).
Q. Chen, N. D. Marco, Y. (Michael) Yang, T. B. Song, C. C. Chen, H. Zhao, Z. Hong, H. Zhou, Y. Yang, Under the spotlight: the organic-inorganic hybrid halide perovskite for optoelectronic applications, Nano Today 10, 355 – 396 (2015).
G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, Low-temperature solution-processed wavelength-tunable perovskite for lasing. Nat. Mater. 13, 476 – 480 (2014).
B. Sun, X. F. Liu, X. Y. Li, Y. Cao, Z. Yan, L. Fu, N. Tang, Q. Wang, X. Shao, D. Yang, and H. L. Zhang, Reversible thermochromisn and strong ferromagnetism in two-dimensional hybrid perovskite, Angew. Chem. Int. Ed. 59, 203-208 (2020).
L. Mao, S. M. L. Teicher, C. C. Stoumpos, R. M. Kennard, R. A. DeCrescent, G. Wu, J. A. Schuller, M. L. Chabinyc, A. K. Cheetham, and R. Seshadri, Chemical and structural diversity of hybrid layered double perovskite halides, J. Am. Chem. Soc. 141, 19099 – 19109 (2019).
Y. Hou, C. Wu, D. Yang, T. Ye, V. G. Honavar, A. C. T. van Duin, K. Wang, and S. Priya, Two-dimensional hybrid organic-inorganic perovskites as emergent ferroelectric materials, J. Appl. Phys. 128, 060906 (2020).
B. Song, J. Hou, H. Wang, S. Sidhik, J. Miao, H. Gu, H. Zhang, S. Liu, Z. Fakhraai, J. Even, J. C. Blancon, A. D. Mohite, and D. Jariwala, Determination of the dielectric functions and exciton oscillator strength of two-dimensional hybrid perovskites, ACS Materials Lett. 3, 148-159 (2021).
T. A. Berhe, W. N. Su, C. H. Chen, C. J. Pan, J. H. Cheng, H. M. Chen, M. C. Tsai, L.Y. Chen, A. A. Dubale, and B. J. Hwang, Organometal halide perovskite solar cells: degradation and stability, Energy Environ. Sci. 9, 323-356 (2016).
S. Wu, L. Cheng, and Q. Wang, Excitonic effects and related properties in semiconductor nanostructures: role of size and dimensionality, Mater. Res. Express 4, 085017 (2017).
J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. S. Lim, J. A. Chang, Y. H. Lee, H. J. Kim, A. Sarkar, M. K. Nazeeruddin, M. Grätzel, Efficiency inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors, Nat. Photonics 7, 486 – 491 (2013).
L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, and M. Grätzel, Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells, J. Am. Chem. Soc. 134, 17396 – 17399 (2012).
B. Saparov and D. B. Mitzi, Organic-inorganic perovskite: structural versatility for functional materials design, Chem. Rev. 116, 4558 – 4596 (2016).
B. Vargas, R. T. Cadena, J. R. Hernandez, M. Gembicky, H. Xie, J. Jimenez-Mier, Y. S. Liu, E. M. Proupin, K. R. Dunbar, N. Lopez, P. O. Velasco, and D. Solis-Ibarra, Optical, electronic, and magnetic engineering of <111> layered halide perovskites, Chem. Mater 30, 5315 – 5321 (2018).
B. D. Milbrath, A. J. Peurrung, M. Bliss, and W. J. Weber, Radiation detector materials: an overview, J. Mater. Res. 23, 2561 – 2581 (2008).
J. Huang, Y. Yuan, Y. Shao, and Y. Yan, Understanding the physical properties of hybrid perovskites for photovoltaic applications, Nat. Rev. Mater 2, 17042 (2017).
J. Luo, X. Wang, S. Li, J. Liu, Y. Guo, G. Niu, L. Yao, Y. Fu, L. Gao, Q. Dong, C. Zhao, M. Leng, F. Ma, W. Liang, L. Wang, S. Jin, J. Han, L. Zhang, J. Etheridge, J. Wang, Y. Yan, E. H. Sargent, and J. Yang, Efficient and stable emission of warm – white light from lead – free halide double perovskites, Nature 563, 541 – 545 (2018).
M. D. Smith, E. J. Crace, A. Jaffe, and H. I. Karunadasa, The diversity of layered halide perovskites, Annu. Rev. Mater. Res. 48, 111 – 136 (2018).
J. Xu, J. B. Liu, J. Wang, B. X. Liu, and B. Huang, Prediction of novel p-type transparent conductors in layered double perovskites: a first – principles study, Adv. Funct. 28, 1800332 (2018).
G. Tang, Z. Xiao, H. Hosono, T. Kamiya, D. Fang, and J. Hong, Layered halide double perovskites Cs3+nM(II)nSb2X9+3n (M = Sn, Ge) for photovoltaic applications, J. Phys. Chem. Lett. 9, 43 – 48 (2018).
F. P. G. de Arquer, A. Armin, P. Meredith, and E. H. Sargent, Solution – processed semiconductors for next-generation photodetectors, Nat. Rev. Mater 2, 16100 (2017).
M. A. Green, A. Ho-Baillie, and H. J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8, 506 – 514 (2014).
M. A Green, E. D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, X. Hao, Solar cell efficiency tables (version 58). Prog. Photovolt. 29, 657 – 667 (2021).
S. H. Turren-Cruz, A. Hagfeldt, and M. Saliba, Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture, Science 362, 449 – 453 (2018).
J. Seo, J. H. Noh, and S. I. Seok, Rational strategies for efficient perovskite solar cells, Acc. Chem. Res. 49, 562 – 572 (2016).
L. Pedesseau, D. Sapori, B. Traore, R. Robles, H. H. Fang, M. A. Loi, H. Tsai, W. Nie, J. C. Blancon, A. Neukirch, S. Tretiak, A. D. Mohite, C. Katan, J. Even, and M. Kepenekian, Advances and promises of layered halide hybrid perovskite semiconductors, ACS Nano 10, 9776 – 9786 (2016).
F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, and M. G. Kanatzidis, Lead-free solid-state organic-inorganic halide perovskite solar cells, Nat. Photonics 8, 489 – 494 (2014).
C. C. Vidyasagar, B. M. M. Flores, V. M. J. Perez, Recent advances in synthesis and properties of hybrid halide perovskites for photovoltaics. Nano-Micro Lett. 10, 68-1~34 (2018).
Y. Li, M. Deng, X. Zhang, T. Xu, X. Wang, Z. Yao, Q. Wang, L. Qian, and C.u Xiang, Stable and efficient CsPbI3 quantum-dot light-emitting diodes with strong quantum confinement, Nat. Commun 15, 5696 (2024).
T. Niu, L. Chao, X. Dong, L. Fu, and Y. Chen, Phase-pure α-FAPbI3 for perovskite solar cells, J. Phys. Chem. Lett 13, 1845 – 1854 (2022).
Monika, S. Pachori, S. Kumari, and A. S. Verma, An emerging high performance photovoltaic device with mechanical stability constants of hybrid (HC(NH2)2PbI3) perovskite, J. Mater. Sci: Mater. Electron. 31, 18004 – 18017 (2020).
G. Kieslich, S. Sun, and A. K. Cheetham, Solid-state principles applied to organic-inorganic perovskites: new tricks for an old dog, Chem. Sci. 5, 4712−4715 (2014).
Z. Cheng and J. Lin, Layered organic-inorganic hybrid perovskites: structure, optical properties, film preparation, patterning, and templating engineering, CrystEngComm 12, 2646 – 2662 (2010).
G. Grancini, A. R. S. Kandada, J. M. Frost, A. J. Barker, M. D. Bastiani, M. Gandini, S. Marras, G. Lanzani, A. Walsh, A. Petrozza, Role of microstructure in the electron-hole interaction of hybrid lead halide perovskites. Nat. Photonics 9, 695 – 701 (2015).
F. Zheng, L. Z. Tan, S. Liu, A. M. Rappe, Rashba spin-orbit coupling enhanced carrier lifetime in CH3NH3PbI3, Nano Lett. 15, 7794 – 7800 (2015).
D. B. Mitzi, Templating and structural engineering in organic-inorganic perovskites, J. Chem. Soc., Dalton Trans. 1−12 (2001).
Y. Y. Li, C. K. Lin, G. L. Zheng, Z. Y. Cheng, H. You, W. D. Wang, and J. Lin, Novel ⟨110⟩-oriented organic−inorganic perovskite compound stabilized by N-(3-aminopropyl)imidazole with improved optical properties, Chem. Mater. 18, 3463−3469 (2006).
A. Lemmerer and D. G. Billing, Synthesis, characterization, and phase transitions of the inorganic-organic layered perovskite-type hybrids [(CnH2n+1NH3)2PbI4], n = 7, 8, 9, and 10, Dalton Trans. 41, 1146 – 1157 (2012).
A. Lemmerer and D. G. Billing, Effect of heteroatoms in the inorganic-organic layered perovskite-type hybrids [(ZCnH2nNH3)2PbI4], n = 2, 3, 4, 5, 6; Z = OH, Br, I; and [(H3NC2H4S2C2H4NH3)PbI4], CrystEngComm 12, 1290 – 1301 (2010).
J. Xu, C. Xu, J. B. Liu, L. Bellaiche, H. Xiang, B. X. Liu, and B. Huang, Prediction of room-temperature half-metallicity in layered halide double perovskite, NPJ Comput. Mater 5, 114 (2019).
N. Singhal, R. Chakraborty, P. Ghosh, and A. Nag, Low-bandgap Cs4CuSb2Cl12 layered double perovskite: synthesis, reversible thermal changes, and magnetic interaction, Chem Asian J 13, 2085 – 2092 (2018).
J. H. Wei, J. F. Liao, X. D. Wang, L. Zhou, Y. Jiang, and D. B. Kuang, All-inorganic lead-free heterometallic Cs4MnBi2Cl12 perovskite single crystal with highly efficient orange emission, Matter 3, 892 – 903 (2020).
J. Yang, K. Liu, X. Chen, and D. Shen, Recent advances in optoelectronic and microelectronic devices based on ultrawide-bandgap semiconductors, Prog. Quantum. Electron. 83, 100397 (2022).
G. A. Elbaf, D. B. Straus, O. E. Semonin, T. D. Hull, D. W. Paley, P. Kim, J. S. Owen, C. R. Kagan, and X. Roy, Unbalanced hole and electron diffusion in lead bromide perovskites, Nano Lett. 17, 1727 – 1732 (2017).
M. Testa, A. D. Santis, G. Tinti, A. Paoloni, G. Papalino, G. Felici, Z. Chubinidze, F. Matteocci, M. A. D. Maur, S. Rizzato, L. L. Presti, I. Viola, S. Morganti, and C. Rovelli, Direct detection of minimum ionizing charged particles in a perovskite single crystal detector with single particle sensitivity, Nanoscale 16, 12918 – 12922 (2024).
A. M. A. Leguy, P. Azarhoosh, M. Isabel, Alonso, M. Campoy-Quiles, O. J. Weber, J. Yao, D. Bryant, M. T. Weller, J. Nelson, A. Walsh, M. V. Schilfgaarde, and P. R. F. Barnes, Experimental and theoretical optical properties of methylammonium lead halide perovskites, Nanoscale 8, 6317 – 6327 (2016).
K. H. Wang, L. C. Li, M. Shellaiah, and K. W. Sun, Structural and photophysical properties of methylammonium lead tribomide (MAPbBr3) single crystals, Sci. Rep. 7, 13643 (2017).
K. Nakada, Y. Matsumoto, Y. Shimoi, K. Yamada, and Y. Furukawa, Temperature-dependent evolution of Raman spectra of methylammonium lead halide perovskites, CH3NH3PbX3 (X = I, Br), Molecules 24, 626 (2019).
F. Ruf, M. F. Ayguler, N. Giesbrecht, B. Rendenbach, A. Magin, P. Docampo, H. Kalt, and M. Hetterich, Temperature-dependent studies of exciton binding energy and phase-transition suppression in (Cs,FA,MA)Pb(I,Br)3 perovskites, APL Mater. 7, 031113 (2019).
G. Mannino, I. Deretzis, E. Smecca, A. L. Magna, A. Alberti, D. Ceratti, D. Cahen, Temperature-dependent optical band gap in CsPbBr3, MAPbBr3, and FAPbBr3 single crystals, J. Phys. Chem. Lett. 11, 2490 – 2496 (2020).
M. Cardona, Modulation spectroscopy supplement 11 to solid state physics, advances in research and applications; Seitz, F. et al. Eds.; Academic: New York, 1969; pp 15−25.
J. S. Park, S. Choi, Y. Yan, Y. Yang, J. M. Luther, S. H. Wei, P. Parilla, K. Zhu, Electronic structure and optical properties of α - CH3NH3PbBr3 perovskite single crystal, J. Phys. Chem. Lett. 6, 4304 – 4308 (2015).
M. Kato, T. Fujiseki, T. Miyadera, T. Sugita, S. Fujimoto, M. Tamakoshi, M. Chikamatsu, and H. Fujiwara, Universal rules for visible-light absorption in hybrid perovskite materials, J. Appl. Phys. 121, 115501-1~14 (2017).
Y. Jiang, A. M. Soufiani, A. Gentle, F. Huang, A. Ho-Baillie, and M. A. Green, Temperature dependent optical properties of CH3NH3PbI3 perovskite by ellipsometry spectroscopy, Appl. Phys. Lett. 108, 061905 (2016).
C. Yu, Z. Chen, J. J. Wang, W. Pfenninger, N. Vockic, J. T. Kenney, K. Shum, Temperature dependence of the band gap of perovskite semiconductor compound CsSnI3, J. Appl. Phys. 110, 063526 (2011).
A. Caretta, R. Miranti, R. W. A. Havenith, E. Rampi, M. C. Donker, G. R. Blake, M. Montagnese, A. O. Polyakov, R. Broer, T. T. M. Palstra, and P. H. M. Loosdrecht, Low-frequency Raman study of the ferroelectric phase transition in a layered CuCl4-based organic-inorganic hybrid, Phys. Rev. B 89, 024301 (2014).
S. Kassou and A. Belaaraj, A Cu based layered multifunctional material: (C8H12N)2CuCl4 optical and electronic properties, Mater. Res. Express 5, 076305 (2018).
S. Chai, J. Xiong, Y. Zheng, R. Shi, and J. Xu, Dielectric phase transition of an A2BX4-type perovskite with a pentahedral to octahedral transformation, Dalton Trans. 49, 2218 (2020).
W. Zhai, C. Ge, X. Fang, K. Zhang, C. Tian, K. Yuan, S. Sun, Y. Li, W. Chen, and G. Ran, Acetone vapor-assisted growth of 2D single-crystalline organic lead halide perovskite microplates and their temperature-enhanced photoluminescence, RSC Adv. 8, 14527-14531 (2018).
X. Li, B. Li, J. Chang, B. Ding, S. Zheng, Y. Wu, J. Yang, G. Yang, X. Zhong, and J. Wang, (C6H5-CH2-NH3)2CuBr4: A lead-free, highly stable two-dimensional perovskite for solar cell applications, ACS Appl. Energy Mater. 1, 2709 (2018).
Y. Ma, L. Zhang, Y. Tang, S. Wu, M. L. Tong, K.Wang, B. Zou, and M. R. Li, Pressure-induced piezochromisn and structure transitions in lead-free layered Cs4MnBi2Cl12 quadruple perovskite, ACS Appl. Energy Mater 4, 7513 – 7518 (2021)
Y. Wang, X. Lu, W. Yang, T. Wen, L. Yang, X. Ren, L. Wang, Z. Lin, Y. Zhao, Pressure-induced phase transformation, reversible amorphization, and anomalous visible light response in organolead bromide perovskite. J. Am. Chem. Soc. 137, 11144−9 (2015).
Fujiwara, H. Spectroscopic Ellipsometry Principles and Applications (John Wiley & Sons, Ltd, 2003).
F. Wooten, Optical properties of solids (Academic Press, New York, 1972).
Frank L Pedrotti, Leno M Pedrotti, and Leno S Pedrotti, Introduction to optics (Cambridge University Press, 2018).
Tompkins, H. G.; Irene, E. A. Handbook of Ellipsometry (Springer, 2005).
Z. V. Popovic, Raman scattering in materials science, Mater. Sci. Forum 214, 11 (1996).
Y. C. Cho and S. I. Ahn, Fabricating a Raman spectrometer using an optical pickup unit and pulsed power, Sci. Rep. 10, 11692 (2020).
R. D. Mero, K. Ogawa, S. Yamada, H. L. Liu, Optical studies on the phase transitions in YBaMn2O6 single crystals, ACS Omega 6, 22137-22150 (2021).
H. Laysandra, Y. C. Chao, and H. L. Liu, Assessing optical properties of CH3NH3PbBr3 single crystals across the structural phase transitions by spectroscopic ellipsometry, J. Phys. Chem. C 126, 797-805 (2022).
K. Momma and F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272 – 1276 (2011).
J. T. Tisdale, T. Smith, J. R. Salasin, M. Ahmadi, N. Johnson, A. V. Levlev, M. Koehler, C. J. Rawn, E. Lukosi, and B. Hu, Precursor purity effects on solution-based growth of MAPbBr3 single crystals towards efficient radiation sensing, CrystEngComm 20, 7818 – 7825 (2018).
H. Fu, C. Jiang, J. Lao, C. Luo, H. Lin, H. Peng, and C. G. Duan, An organic-inorganic hybrid ferroelectric with strong luminescence and high Curie temperature, CrystEngComm. 22, 1436 (2020).
X. F. Qi, F. Zhang, Z. P. Chen, X. Chen, M. C. Jia, H. F. Ji, and Z. F. Shi, Hydrothermal synthesis of stable lead-free Cs4MnBi2Cl12 perovskite single crystals for efficient photocatalyric degradation of organic pollutants, J. Mater. Chem. C 11, 3715 (2023).
R. D. Mero, K. Ogawa, S. Yamada, and H. L. Liu, Optical study of the electronic structure and lattice dynamics of NdBaMn2O6 single crystals. Sci. Rep. 9, 18164-1~11 (2019).
T. T. T. Nguyen, Y. Kim, S. Bae, M. Bari, H. R. Jung, W. Jo, Y. H. Kim, Z. G. Ye, and S. Yoon, Raman scattering studies of the structural phase transitions in single-crystalline CH3NH3PbCl3, J. Phys. Chem. Lett. 11, 3773 – 3781 (2020).
T. Yin, Y. Fang, X. Fan, B. Zhang, J. L. Kuo, T. J. White, G. M. Chow, J. Yan, and Z. X. Shen, Hydrogen-bonding evolution furing the polymorphic transformations in CH3NH3PbBr3: experiment and theory, Chem. Mater. 29, 5974 – 5981 (2017).
V. Trepakov, A. Dejneka, L. Jastrabik, A. Lynnyk, D. Chvostova, P. Syrnikov, and P. Markovin, The negative thermos-optic effect in KTaO3: an ellipsometry study, Phase Transit. 88, 991 – 1000 (2015).
J. Even, L. Pedesseau, J. M. Jancu, and C. Katan, Importance of spin-orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications, J. Phys. Chem. Lett. 4, 2999 – 3005 (2013).
N. Onoda-Yamamuro, T. Matsuo, and H. Suga, Dielectric study of CH3NH3PbX3 (X = Cl, Br, I), J. Phys. Chem. Solids 53, 935 – 939 (1992).
P. K. Gogoi and D. Schmidt, Temperature-dependent dielectric function of bulk SrTiO3: Urbach tail, band edges, and excitonic effects. Phys. Rev. B 93, 075204-1~11 (2016).
R. Jansson and H. Arwin, Selection of the physically correct solution in the n-media Bruggeman effective medium approximation, Opt. Commun. 106, 133-138 (1994).
D. Stroud, The effective medium approximations: some recent developments, Superlattices Microstruct. 23(3/4), 1998.
D. Zhang, E. Cherkaev, M. P. Lamoureux, Stieltjes representation of the 3D Bruggeman effective medium and Pade approximation, Appl. Math. Comput. 217, 7092-7107 (2019).
E. S. Kang, M. Takahashi, Y. Tokuda, and T. Yoko, Wavelength dependence of thermo-optic coefficient of organically modified SiO2-ZrO2 hybrid films, Appl. Phys. Lett. 89, 131916-1~3 (2006).
G. Ghosh, Dispersion of thermo-optic coefficients in a potassium niobate nonlinear crystal, Appl. Phys. Lett. 65, 3311 – 3313 (1994).
H. W. Chen, D. P. Gulo, and H. L. Liu, Characterizing temperature-dependent optical properties of (MA0.13FA0.87)PbI3 single crystals using spectroscopic ellipsometry, Sci. Rep. 9, 18253 (2019).
F. Lehmann, A. Franz, D. M. Tobbens, S. Levcenco, T. Unold, A. Taubert, and S. Schorr, the phase diagram of a mixed halide (Br, I) hybrid perovskite obtained by synchrotron X-ray diffraction, RSC Adv. 9, 11151 – 11159 (2019).
P. F. Ndione, Z. Li, K. Zhu, Effects of alloying on the optical properties of organic-inorganic lead halide perovskite thin films, J. Mater. Chem. C. 4, 7775-7782 (2016).
G. Mannino, I. Deretzis, E. Smecca, F. Giannazzo, S. Valastro, G. Fisicaro, A. L. Magna, D. Ceratti, A. Alberti, CsPbBr3, MAPbBr3, and FAPbBr3 bromide perovskite single crystals: interband critical points under dry N2 and optical degradation under humid air, J. Phys. Chem. C. 125, 4938-4945 (2021).
R. J. Elliott, Intensity of optical Absorption by excitons. Phys. Rev 108, 1384 – 1389 (1957).
A. M. Soufani, F. Huang, P. Reece, R. Sheng, A. Ho-Baillie, M. A. Green, Polaronic exciton binding energy in iodide and bromide organic-inorganic lead halide perovskites, Appl. Phys. Lett. 107, 231902 (2015).
V. D. Innocenzo, G. Grancini, M. J. P Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, and A. Petrozza, Excitons versus free charges in organo-lead tri-halide perovskites, Nat. Commun. 5, 3586-1~6 (2014).
B. J. Foley, D. L. Mariowe, K. Sun, W. A. Saidi, L. Scudiero, M. C. Gupta, and J. J. Choi, Temperature dependent energy levels of methylammonium lead iodide perovskite, Appl. Phys. Lett. 106, 243904-1~5 (2015).
J. Even, L. Pedesseau, M. A. Dupertuis, J. M. Jancu, and C. Katan, Electronic model for self-assembled hybrid/organic perovskite semiconductors: reverse band edge electronic states ordering and spin-orbit coupling, Phys. Rev. B 86, 205301-1~4 (2012).
M. I. Dar, G. Jacopin, S. Meloni, A. Mattoni, N. Arora, A. Boziki, S. M. Zakeeruddin, U. Rothlisberger, and M. Gratzel, Origin of unusual bandgap shift and dual emission in organic-inorganic lead halide perovskites. Sci. Adv. 2016, 2, e1601156-1~9.
D. H. Jang, W. J. Lee, E. Sohn, H. J. Kim, D. Seo, J. Y. Park, E. J. Choi, and K. H. Kim, Single crystal growth and optical properties of a transparent perovskite oxide LaInO3, J. Appl. Phys. 121, 125109-1~6 (2017).
J. Shi, H. Zhang, Y. Li, J. J. Jasieniak, Y. Li, H. Wu, Y. Luo, D. Li, and Q. Meng, Identification of high-temperature exciton states and their phase-dependent trapping behaviour in lead halide perovskites, Energy Environ. Sci. 11, 1460 – 1469 (2018).
V. Mishra, A. Sagdeo, V. Kumar, M. K. Warshi H. M. Rai, S. K. Saxena, D. R. Roy, V. Mishra, R. Kumar, P. R. Sagdeo, Electronic and optical properties of BaTiO3 across tetragonal to cubic phase transition: an experimental and theoretical investigation. J. Appl. Phys. 122, 122, 065105-1~10 (2017).
B. Wenger, P. K. Nayak, X. Wen, S. V. Kesava, N. K. Noel, and H. J. Snaith, Consolidation of the optoelectronic properties of CH3NH3PbBr3 perovskite single crystals. Nat. Commun. 8, 590 (2017).
E. T. Hoke, D. J. Slotcavage, E. R. Dohner, A. R. Bowring, H. I. Karunadasa, M. D. McGehee, Reversible photo-induced trap formation in mixed-halide hybrid perovskite for photovoltaics. Chem. Sci. 6, 613-617 (2015).
L. Vina, S. Logothetidis, and M. Cardona, Temperature dependence of the dielectric function of Germanium, Phys. Rev. B. 30, 1979 – 1991 (1984).
T. Runka and M. Berkowski, Perovskite La1-xSrxGa1-yMnyO3 solid solution crystals: Raman spectroscopy characterisation, J. Mater 47, 5393-5401 (2012).
C. Autret, R. Retoux, M. Hervieu, and B. Raveau, Charge ordering in a 2D manganite, Pr0.25Ca1.75MnO4, Chem. Mater. 13, 4745-4752 (2001).
Y. Xu, Y. Wang, Y. Chen, Y. Yue, and J. Jiang, Temperature dependence of Raman enhancement induced by Au nanorods array, Mater. Res. Express 5, 065057 (2018).
H. H. Burke and I. P. Herman, Temperature dependence of Raman scattering in Ge1-xSix alloys, Phys. Rev. B 48, 15016 (1993).
M. Barkanski, R. F. Wallis, and E. Haro, Anharmonic effects in light scattering due to optical phonons in silicon, Phys. Rev. B 28, 1928 (1983).
T. Handa, H. Tahara, T. Aharen, and Y. Kanemitsu, Large negative thermos-optic coefficients of a lead halide perovskite, Sci. adv. 5, eaax0786 (2019).
D. P. Gulo, H. Yeh, W. H. Chang, and H. L. Liu, Temperature-dependent optical and vibrational properties of PtSe2 thin films, Sci. Rep. 10, 19003 (2020).
H. L. Liu, T. Yang, J. H. Chen, H. W. Chen, H. Guo, R. Saito, M. Y. Li, and L. J. Li, Temperature-dependent optical constants of monolayer MoS2, MoSe2, WS2, and WSe2: spectroscopic ellipsometry and first-principles calculations, Sci. Rep. 10, 15282 (2020).
B. Chen, R. Yu, G. Xing, Y. Wang, W. Wang, Y. Chen, X. Xu, and Q. Zhao, Dielectric-engineering of 2D organic-inorganic hybrid perovskites, ACS Energy Lett. 9, 226 – 242 (2024).
R. K. Singh, R. Kumar, N. Jain, S. R. Dash, J. Singh, and A. Srivastava, Investigation of optical and dielectric properties of CsPbI3 inorganic lead iodide perovskite thin film, J. Taiwan Inst. Chem. Eng. 96, 538 – 542 (2019).
Y. Dong, R. Zhu, and Y. Jia, Linear relationship between the dielectric constant and band gap in low-dimensional mixed-halide perovskites, J. Phys. Chem. C 125, 14883 – 14890 (2021).
A. Fraccarollo, L. Canti, L. Marchese, and M. Cossi, First principles study of 2D layered organohalide tin perovskite, J. Chem. Phys. 146, 234701 (2017).
Y. Zhang, Z. Wang, J. Xi, and J. Yang, Temperature-dependent band gaps in several semiconductors: from the role of electron-phonon renormalization, J. Phys. Condens 32, 475503 (2020).
D. P. Gulo, N. T. Hung, R. Sankar, R. Saito, H. L. Liu, Exploring optical properties of 2 H- and 1 T’- MoTe2 single crystals by spectroscopic ellipsometry, Phys. Rev. Mater. 7 (4), 044001 (2023).
M. Velicky and P. S. Toth, From two-dimensional materials to their heterostructures: an electrochemist’s perspective, Appl. Mater. Today 8, 68 – 103 (2017).
G. Kresse and J. Furthmüller, Efficiency of ab-inition total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci 6, 15 – 50 (1996).
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab inition total-energy calculations using a plane-wave basis set, Phys. Rev. B 54, 11169 (1996).
M. Y. Sofi, M. S. Khan, J. Ali, and M. A. Khan, Exploring the lead-free halide Cs2MGaBr6 (M = Li, Na) double perovskites for sustainable energy applications, Sci. Rep. 14, 5520 (2024).
G. Breit and E. Wigner, Capture of slow neutrons, Phys. Rev. 49, 519 – 531 (1936).
M. V. Klein, in: Manuel Cardona (Ed.), Light scattering in solids I, 1983, Springer-Verlag: Berlin
W. Tao, C. Zhang, Q. Zhou, Y. Zhao, and H. Zhu, Momentarily trapped exciton polaron in two-dimensional lead halide perovskites, Nat. Commun. 12, 1400 (2021).
Y. Liu, L. K. Ono, G. Tong, T. Bu, H. Zhang, C. Ding, W. Zhang, and Y. Qi, Spectral stable blue-light-emitting diodes via asymmetric organic diamine-based Dion-Jacobson perovskites, J. A. Chem. Soc. 143, 19711 – 19718 (2021).
S. Yu, M. Abdellah, T. Pullerits, K. Zheng, and Z. Liang, Asymmetric spacer in Dion-Jacobson halide perovskites induces staggered alignment to direct out-of-plane carrier transport and enhances ambient stability simultaneously, Adv. Funct. 31, 2104342 (2021).
M. D. Smith, A. Jaffe, E. R. Dohner, A. M. Lindenberg, and H. I. Karunadasa, Structural origins of broadband emission from layered Pb-Br hybrid perovskites, Chem. Sci. 8, 4497-4504 (2017).
J. I. Pankove and D. A. Kiewit, Optical processes in semiconductors, J. Electrochem. 119, 156C (1972).
B. Vargas, R. T. Cadena, D. T. Reyes-Castillo, J. R. Hernandez, M. Gembicky, E. M. Proupin, and D. Solis-Ibarra, Chemical diversity in lead-free, layered double perovskites: a combined experimental and computational approach, Chem. Mater. 32, 424 – 429 (2020).