簡易檢索 / 詳目顯示

研究生: 康硯田
Yen-Tien Kang
論文名稱: 水輪機配件銲接之機械性質研究
A Research on the Welding Mechanical Property of Hydraulic Turbine Accessories
指導教授: 張晉昌
Chang, Jin-Chung
郭金國
Kuo, Chin-Guo
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 74
中文關鍵詞: 水輪機砂礫沖蝕銲接機械性質壽命延長
英文關鍵詞: hydraulic turbine, gravel erosion, welding, mechanical property, extension of service life
論文種類: 學術論文
相關次數: 點閱:135下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用水輪機配件常用材料S45C中碳鋼作為V型槽銲接母材,選用三種國產銲條(以A、B、C分別表示)及一種國外進口銲條(以D表示)來進行堆銲銲接,再取試片全銲道,依照ASTM E8M公制規範車製拉伸試棒,經銲後金相顯微組織觀察、微硬度測量、拉伸試驗、SEM破斷面觀察及EDS分析,探討銲料之機械性質和微觀結構變化情形,期望藉此研究提供選擇銲條之應用與參考。
    從實驗結果顯示: A、B、C銲條成份組成為中碳鋼,銲道根部至銲道融池區由波來體組織變化為變韌體組織;冠部微硬度值為Hv 245,均稍大於中心線;降伏強度(YS)約360MPa、抗拉強度(UTS)約460MPa;拉伸破斷面經由SEM觀察,屬延性破壞。
    銲條D組成除了Fe、C外,具一定比例之Cr、Ni含量,其銲後銲道切面光亮,其性質接近不銹鋼特性,其組織為沃斯田體‧肥粒體系不銹鋼(Austenitic-ferritic stainless steel)亦稱為雙相不銹鋼(Two phase stainless steel);硬度高出A、B、C銲條約50%, 於融熔線更高出約100%;而降伏強度(YS)、抗拉強度(UTS)也分別高出A、B、C銲條約35%、60%;拉伸破斷面亦屬延性破壞,但孔洞較上述三種銲條細緻。

    This research introduces S45C medium-carbon steel which commonly used as base material for V-groove welding in hydraulic turbine accessories, in which 3 domestic welding rods (specified as A, B, C, respectively) and one imported welding rod (specified as D) were selected to proceed stack welding, to take test strip on full welding bead and make tensile test bar as per ASTM E8M standard regulation, and to observe via metallographic microstructure, microhardness measurement, tensile test, observation of SEM cross-section and EDS analysis after welding, to explore the mechanical property and changes in microcosmic structure, in which this research is to be provided as a reference and application for the welding rod.
    According to the experiment results : the medium-carbon steel is composed by A, B and C, to change from pearlite structure and become a bainite structure from the root of welding bead to weld-pool of welding bead; with Hv 245 microhardness value for cap area that is slightly higher than middle line; around 360MPa for yield strength (YS) and 460MPa for ultimate tensile strength; and to observe tensile cross-section via SEM, which belongs to ductile fracture.
    In addition to Fe and C, welding rod D contains certain ratio of Cr, Ni, with shining cross-sectional welding bead after welding process, close to stainless nature and Austenitic-ferritic stainless steel structure, which is also named as two-phase stainless steel, with 50% hardness higher than welding rod A, B and C, and welding line exceeds around 100% while YS and UTS exceed 35% and 60% than welding rod A, B and C; tensile cross-section also belongs to ductile fracture with finer hole than above 3 welding rods.

    目錄 謝誌……………………………………………………………………………….I 中文摘要…………………………………………………………………………II 英文摘要..............................................................................................................III 表目錄………………………………………………………………………….VII 圖目錄………………………………………………………………………...VIII 第一章 緒論………………………………………………………………........1 第一節 前言…………………………………………………………………..1 第二節 研究動機……………………………………………………………..2 第三節 研究目的……………………………………………………………..3 第四節 研究範圍與限制……………………………………………………..3 第五節 研究方法……………………………………………………………..4 第二章 文獻回顧………………………………………………………………5 第一節 水輪機沖蝕理論……………………………………………..............5 第二節 水輪機防蝕材料及表面防護技術…………………………………13 第三節 碳鋼簡介……………………………………………………………19 第四節 硬銲簡介……………………………………………………………21 第三章 研究方法與步驟……………………………………………………..28 第一節 實驗流程……………………………………………………………28 第二節 實驗準備……………………………………………………………29 第三節 銲接製程參數設計…………………………………………………32 第四節 顯微組織觀察………………………………………………………34 第五節 微硬度試驗…………………………………………………………36 第六節 拉伸試驗……………………………………………………………37 第七節 SEM觀察及EDS分析…………………………………………….39 第四章 結果與討論…………………………………………………………..40 第一節 顯微組織觀察………………………………………………………41 第二節 微硬度試驗…………………………………………………………48 第三節 拉伸試驗……………………………………………………………52 第四節 SEM觀察及EDS分析…………………………………………….54 第五章 結論與建議…………………………………………………………..59 第一節 結論…………………………………………………………………59 第二節 建議…………………………………………………………………61 參考文獻………………………………………………………………………..62 表目錄 表2-1 表面堆銲材質之成分組成(重量百分比 w﹪)………………………14 表2-2 實驗各試片材質之成分組成(重量百分比 w﹪)…………………16 表2-3 各接合方式的比較………………………...………………………….21 表2-4 不同硬銲填料之最佳間隙……………………….…...........................24 表3-1 四種銲條市價及規格之比較……………………..….……………….30 表3-2 實驗銲接參數……………………..….……………………………….33 表4-1 實驗之拉伸數據……………………..….………………………….52 表4-2 銲料 A之EDS分析結果…………..….………………………………58 表4-3 銲料 B之EDS分析結果…………..….………………………………58 表4-4 銲料 C之EDS分析結果…………..….………………………………58 表4-5 銲料 D之EDS分析結果…………..….………………………………58 表4-6 母材S45C之EDS分析結果………..….…………………………….58 圖目錄 圖1-1 實驗步驟流程圖………………………………………………………..4 圖2-1 固體粒子沖蝕之物理過程...............................................................6 圖2-2 延展材料和易碎材料沖蝕速率與衝擊角度的函數關係…...7 圖2-3 抗沖蝕等級………………………………………………………… 10 圖2-4 來自不同粒子形狀的沖蝕速率....................................................11 圖2-5 堆銲材質及超音波震盪示意圖………………………………………15 圖2-6 試片經空泡(超音波震盪)在不同累積時間之SEM圖……………15 圖2-7 高氮奧斯田鐡對穴蝕磨損之實驗示意圖……………………………17 圖2-8 測定時間各種材質之重量損失率及HNS於電子顯微鏡觀察下之相變化…17 圖2-9  HNS於各階段時間之組織變化…………………………………….18 圖2-10 各元素在H2還原性氣氛下溫度與解離壓之關係圖...................26 圖2-11 各元素的溫度與蒸氣壓的關係圖..................................................27 圖3-1 銲接前母材試片照…………………………........................................29 圖3-2 堆銲銲接過程照……………………………........................................31 圖3-3 SMAW銲接機(電銲機)…………........................................................33 圖3-4 光學顯微鏡……………………………................................................35 圖3-5 顯微組織觀察試片取樣示意圖………………....................................35 圖3-6  Future Tech-FM-700微硬度測試機….............................................36 圖3-7 拉身試棒取樣位置………………………............................................37 圖3-8 ASTM E8M規範中標準試棒及其成比例小試棒之規格....................38 圖3-9 萬能試驗機(AG-10TE)…..................................................................38 圖3-10  JEOL-JSM 6360型掃瞄式電子顯微鏡、OXFORD-INCA Energy 300 型能量散佈光譜儀………………………............................................39 圖4-1  A銲道顯微組織..................................................................................44 圖4-2  B銲道顯微組織..................................................................................45 圖4-3  C銲道顯微組織..................................................................................46 圖4-4  D銲道顯微組織..................................................................................47 圖4-5 微硬度之取樣示意圖............................................................................48 圖4-6 銲條A微硬度分佈曲線........................................................................50 圖4-7 銲條B微硬度分佈曲線........................................................................50 圖4-8 銲條C微硬度分佈曲線........................................................................51 圖4-9 銲條D微硬度分佈曲線........................................................................51 圖4-10 各銲料拉伸強度比較............................................................................53 圖4-11 銲條A破斷面顯微組織....................................................................55 圖4-12 銲條B破斷面顯微組織....................................................................56 圖4-13 銲條C破斷面顯微組織....................................................................56 圖4-14 銲條D破斷面顯微組織....................................................................57 圖4-15 母材破斷面顯微組織........................................................................57

    參考文獻
    1.王家瓚,溪口電廠水輪機壽命延長研究完成報告,台灣電力公司綜合研究所,(2006).
    2.Stachowiak G.W. and Batchelor A. W. (1993) Engineering Tribology, Elesevior,Amesterdam
    3.Bhushan B. (2002) Introduction to Tribology, John Wiley & Sons, New York
    4.Matsumura M. and Chen B.E. (2002) Erosion-resistant materials, In: Duan C.G. and Karelin V.Y. (eds), brasive erosion and corrosion of hydraulic machinery, pp 235-314, Imperial college press, London
    5.Stachowiak G.W. and Batchelor A. W. (1993) Engineering Tribology, Elesevior, Amesterdam
    6.Yabuki A., Matsuwaki K. and Matsumura M. (1999) Critical impact velocity in the solid particles impact erosion of metallic materials, Wear (233-235) pp 468-475
    7.Chevallier P. and Vannes A.B. (1995) Effect on a sheet surface of an erosive particle jet upon impact, Wear (184) pp 87-91
    8.Arnold J.C and Hutchings I.M. (in 1989) Flux rate effects in the erosive wear of elastomers, Jr. of material science (24) pp 833-839
    9.Bjordal M. (1995) Erosion and corrosion of ceramic-metallic coatings and stainless steel, Dr. Ing. Thesis, Universitetet I Trondheim, NTH
    10.Sheldon G.L. and Finnie I. (1966) On the ductile behavior of nominally brittle material during erosive cutting, Transaction of ASME (88B) pp 387-392
    11.Drolon H. and Druaux F. and Faure A. (2000) Particle shape analysis and classification using wavelet transforms, Pattern recognition letters (21) pp 473-482
    12.Chen Q. and Li D. Y. (2003) Computer simulation of solid particle erosion, Wear (254) pp203-210
    13.Z.Xiaojun,L.A.J.Procopiak,N.C.Souza,A.S.C.M.d’Oliveira,Phase transformation during cavitation erosion of a Co stainless steel ,Materials Science and Engineering A358 (2003) 199-204
    14.Fu Wantang,Zheng Yangzeng,He Xiaokui,Resistance of a high nitrogen austenitic steel to cavitation erosion, Wear 249(2001) pp788-791
    15.楊榮顯, 工程材料學, 全華圖書, (1997).
    16.G. Humpston, and D. M. Jacobson: Principles of Soldering and Brazing, Meterials park, Ohio, ASM International, (1993), pp.3-7.
    17.張晏碩,以銅錳基銲材真空硬銲鑽石之研究,碩士論文,國立台北科技大學,台北(2004).
    18.蘇貴福, 新材料的接合技術, 全華圖書, (1992).
    19.M. E. Wilms, V. J. Gadgil, J. M. Krougman and F. P. Ijsseling, Effect ofσ-phase precipitation at 800 °C on the corrosion resistance in sea-water of a high alloyed duplex stainless steel, Corrosion Science, Vol. 36, (1994), No. 5, pp.871-881.
    20.M. Schwartz, Brazing: For the Engineering Technologist, Chapman &Hall, (1995), p.63.
    21.M. Schwartz, Brazing: For the Engineering Technologist, (1995), p.8.
    22.A. Sakamoto, Wetting in Vacuum-Inert Gas Partial Pressure Atmosphere Brazing, Welding Journal, Vol.10, (1983), pp. 272-281s.
    23.Weld Handbook, Vol.2, (1991), 8th Ed., pp. 380-422.
    24.Brazing Handbook, (1991), 4th Ed.
    25.M.M. Schwartz, Brazing, ASM International, (1989), pp439.

    下載圖示
    QR CODE