簡易檢索 / 詳目顯示

研究生: 蔣瑋倫
Wei-Lun Chiang
論文名稱: 行動遊戲App心流經驗對玩家忠誠度之影響
The Effect of Flow Experience on Player Loyalty in Mobile Game Application
指導教授: 蘇友珊
Su, Yu-Shan
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 101
中文關鍵詞: 行動遊戲結構方程模型心流經驗玩家忠誠度
英文關鍵詞: mobile game, structural equational modeling, flow experience, player loyalty
論文種類: 學術論文
相關次數: 點閱:206下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著行動遊戲玩家越來越多及市場越來越競爭,如何把握住消費者的關注,以及如何建立行動遊戲忠誠度留住玩家是不可或缺的任務。近年許多研究認為心流是影響忠誠度的關鍵,基於心流理論的概念,心流需具備前因後果。本研究認為心流的前因包含人機互動、社會互動、技巧與挑戰,後果是由玩家忠誠度所組成。此外心流經驗可以分作知覺娛樂性及集中性注意力。為了瞭解這些前因是否會透過心流經驗影響玩家忠誠度,本研究將會透過目的所提出的假設,以及在臺灣很受歡迎的神魔之塔為例去建立問卷。本研究調查394位玩過神魔之塔的玩家。根據實證結果顯示,人機互動、社會互動、技巧、挑戰皆正向顯著影響心流經驗,進而影響行動遊戲玩家的忠誠度。基於研究結果,從管理意涵我們認為行動遊戲業者應優先增加遊戲的難度以及增設讓玩家互相聊天、討論、互動的平台,行動遊戲業者也必須提供資訊給行動遊戲玩家,讓他們能夠增強他們對遊戲的技巧。除此之外,改善行動遊戲的介面對玩家也相當重要。透過改善以上提及的情況,玩家對行動遊戲的忠誠度就能增強。最後,本研究的實證結果可以做為未來行動遊戲設計與管理的參考。

    With increasing number of the mobile game players and the fierce competition of mobile game market, how to capture the attention from consumers and how to establish the loyalty of mobile game in retaining game players are the indispensable tasks. In recent years, many studies on consumer behavior have shown that flow was the key factor affecting consumers’ loyalty. However, flow theory often used in terms of antecedents and consequence. In order to use flow theory for exploring the factors impacting game players, this study will identify antecedent factors including human-computer interaction, social interaction, skill, and challenge and consequence factor consisting of the player loyalty. Additionally, flow experience can be divided into two factors: perceived enjoyment and focused attention. To understand whether these antecedent factors will influence the loyalty of game players through flow experience, this research will thereby examine the proposed hypothesis regarding to above mentioned purposes, and the very popular mobile game of Tower of Savior will be a case for conducting questionnaire survey. This research investigates 394 respondents with rich experience in Tower of Savior game. According to the empirical study results, human-computer interaction, social interaction, skill, challenge have positively influence on flow experience, and further have a positive influence on loyalty of mobile game players. For the managerial implication based on findings, mobile game firms should be prioritized increasing the level of difficulty and build up a platform where game players can chat, discuss, and interact with others. Mobile game firms should also provide information with respect to mobile game for game players so that these players can enhance their game skill. Besides, improving the interfaces of mobile game is an essential thing. Through improving aforementioned situations, then the mobile game players’ loyalty could be enhanced. In conclusion, this empirical results can be seen as reference for future similar mobile game design and management.

    摘要 I Abstract II 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 5 第三節 研究範圍 6 第四節 名詞釋義 7 第二章 文獻探討 9 第一節 行動遊戲APP 9 第二節 心流理論(flow theory) 17 第三節 互動性 24 第四節 玩家忠誠度 27 第五節 人機互動、社會互動、技巧、挑戰、心流經驗與顧客忠誠度各變項間關係 29 參、研究設計與實施 32 第一節 研究方法與對象 32 第二節 研究架構與假說 34 第三節 研究工具 37 第四節 研究流程 41 第五節 資料處理方法 43 第四章 實證資料分析 52 第一節 項目分析 52 第二節 樣本結構分析 54 第三節 驗證性因素分析 57 第四節 結構方程模型分析 65 第五節 路徑分析 76 第五章 討論與結論 79 第一節 主要研究結果 79 第二節 研究貢獻 82 第三節 研究限制與未來方向 84 第四節 結論 86 參考文獻 87

    一、中文部分
    邱皓政(2004)。結構方程模式:LISREL 的理論、技術與應用。臺北市:雙葉書廊。
    廖展輝 (2004)。線上遊戲涉入程度及遊戲沉浸經驗與遊戲忠誠度之關係研究(未出版之碩士論文)。國立交通大學管理科學系所,新竹市。
    邱惠庭 (2009)。網路社交遊戲影響沉浸體驗因素之研究-以Facebook為例(未出版之碩士論文)。輔仁大學管理學研究所,新北市。
    吳明隆(2009)。SPSS操作與應用-問卷統計分析與實務。臺北市:五南。
    吳明隆 (2009)。結構方程模式AMOS的操作與應用。臺北市: 五南。
    李正文、李元傑、董丞家 (2010)。以消費者觀點探討網路遊戲廠商之經營策略。先進工程學刊,5 (4),367 – 376。
    邱皓政 (2011)。當 PLS遇上SEM:議題與對話。αβγ量化研究學刊,3 (1),20-53。
    李怜妏 (2011)。沉浸理論與網路成癮之社群網路服務線上遊戲探究-以臉書餐城為例(未出版之碩士論文)。世新大學資訊傳播學研究所,新北市。
    陳寬裕、王正華 (2011)。結構方程模型分析實務:AMOS的運用。臺北市:五南。
    黃郁翔 (2012)。遊戲虛擬社群對使用者忠誠度的影響之研究-以魔物獵人系列遊戲為例(未出版之碩士論文)。國立臺北教育大學數位科技設計學系,臺北市。
    二、網路部分
    神魔之塔官網:http://www.towerofsaviors.com/。
    Google Play官網:https://play.google.com/store。
    iTunes官網:https://www.apple.com/itunes/。
    資策會FIND (2004)。遊戲產業現況與發展趨勢分析。取自http://mic.iii.org.tw/aisp/book/bookdetail.asp?bptype=103&bsqno=76。
    資策會FIND (2012)。行動遊戲發展現況與消費趨勢。取自http://goo.gl/6S1bcI
    104市調中心 (2012)。APP 放心玩。取自http://goo.gl/BQS3pv。
    IDC (2012). Android and iOS Surge to New Smartphone OS Record in Second Quarter, According to IDC. Retrieve from:http://goo.gl/L55wqZ
    IDC (2013). Smartphone Shipments to Top 1 Billion in 2014. Retristed from:http://www.statista.com/topics/840/smartphones/chart/1011/connected-device-shipment-forecast/
    Applift (2013). The Global Mobile Games Landscape. AppLift news. Retristed from:http://www.applift.com/the-global-mobile-games-market.html
    三、英文部分
    Bollen, K. A. (1989). Structural Equations with Latent Variables. New York., NY: Wiley.
    Bollen, K. A., & Long, J. S. (1993). Testing structural equation models. Newbury Park, CA: Sage.
    Byrne, B. B. (2010). Principles and Practice of Structural Equation Modeling. New York, NY: Guilford Press.
    Britton, A., Setchi, R., & Marsh, A. (2013). Intuitive interaction with multifunctional mobile interfaces. Journal of King Saud University - Computer and Information Sciences, 25 (2), 187-196.
    Csikszentmihalyi, M. (1975). Beyond boredom and anxiety. San Francisco, CA: Jossey-Bass.
    Csikszentmihalyi, M. (1977). Beyond Boredom and Anxiety (2nd ed.). San Francisco, CA: Jossey-Bass.
    Csikszentmihalyi, M., & Massimini, F. (1985). On the psychological selection of biocultural information. New Ideas in Psychology, 3 (2), 115-138.
    Csikszentmihalyi, M. (1990). Flow: The Psychology of Optimal Experience. New York, NY: Harpers Perennial.
    Csikszentmihalyi, M. (1998). Finding Flow: The Psychology of Engagement with Everyday life. New York, NY: Basic Books.
    Cole, R., Van Vuuren, S., Pellom, B., Hacioglu, K., Ma, J., Movellan, J., Schwartz, S., Wade-stein, D. (2003). Perceptive animated interfaces: first steps toward a new paradigm for human–computer interaction. Proceedings of the IEEE, pp. 1391–1405. doi: 0018-9219/03$17.00
    Choi, D., & Kim, J. (2004). Why people continue to play online games: in search of critical design factors to increase customer loyalty to online contents. Cyberpsychology & Behavior , 7 (1), 11–24.
    Chang, C. C. (2013). Examining users’ intention to continue using social network games: A flow experience perspective. Telematics and Informatics, 30 (4), 311-321.
    Dong, P., & Wyer, R. S. (2014). How time flies: The effects of conversation characteristics and partner attractiveness on duration judgments in a social interaction. Journal of Experimental Social Psychology, 50, 1-14.
    Fornell, C. R., & Larcker, F. F. (1981). Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18 (3), 39-51.
    Fornell, C., & Wernerfelt, B. (1988). A Model for Customer Complaint Management. Marketing Science, 7 (3), 287-298.
    Gao, S., L. M. Patricia, and A. J. Robert. (2008). Nonnormality of data in structural equation models. Transportation Research Record: Journal of the Transportation Research Board, pp. 115-124. doi: 10.3141/2082-14
    Hoffman, Donna L. and Thomas P. Novak (1996). Marketing in Hypermedia Computer-Mediated Environments: Conceptual Foundations. Journal of Marketing, 60 (3), 50-68.
    Hoffman, D. L., & Novak, T. P. (2009). Flow online: Lessons learned and future prospects. Journal of Interactive Marketing, 23 (1), 23–34.
    Hair, J., Black, B., Babin, B., Anderson, R. E., & Tatham, R. L. (2009). Multivariate Data Analysis (7th ed.). Englewood Cliffs, NJ: Prentice Hall.
    Hooten, E. R., Hayes, S. T., & Adams, J. A. (2013). Communicative modalities for mobile device interaction. International Journal of Human-Computer Studies, 71 (10), 988-1002.
    Jones, E. E., & Nisbett, R. E. (1971). The actor and the observer: Divergent perceptions of the causes of behavior. New York: General Learning Press.
    Jones, A.P., & James, L.R. (1979). Psychological Climate: Dimensions of individual and aggregated work environment perceptions. Organizational Behavior and Human Performance, 23 (2), 201-250.
    Johnson, G. J., Gordon C. B., and Anand, K. (2006). Interactivity and Its Facets Revisited: Theory and Empirical Test. Journal of Advertising, 35 (4), 35-52.
    Koufaris, M. (2002). Applying the technology acceptance model and flow theory to online consumer behavior. Information Systems Research, 13 (2), 205–223.
    Korzaan, M. L. (2003). Going With the Flow: Predicting Online Purchase Intentions. Journal of Computer Information Systems, 43 (4), 25–31.
    Kline, R. B. (2005). Principles and practice of structural equation modeling. New York, NY: Guilford.
    Loehlin, J. C. (1992). Latent variable models: An introduction to factor. Hillsdale, NJ: Lawrence Erlbaum Associates.
    Laurel, B. (1993). Computer as Theatre. New York, NY: Addison-Wesley.
    Lewinski, J. S. (2000). Developer’s Guide to Computer Game Design. Portland, OR: Wordware.
    Lu, Y., Zhou, T., & Wang, B. (2002). Exploring Chinese users’ acceptance of instant messaging using the theory of planned behavior, the technology acceptance model, and the flow theory. Computers in Human Behavior, 25 (1), 29-39.
    Liu, Y., & Shrum, L. J. (2002). What Is Interactivity and Is It Always Such a Good Thing? Implications of Definition, Person, and Situation for the Influence of Interactivity on Advertising Effectiveness. Journal of Advertising, 31 (4), 53 - 64.
    Liu, Y., & Shrum, L. J. (2009). A dual-process model of interactivity effects. Journal of Advertising, 38 (2), 53–68.
    Lee, M.C. (2009). Understanding the behavioral intention to play online games: an extension of the theory of planned behavior. Online Information Review, 33 (5), 849–872.
    Massimini, F., & Carli, M. (1988). The systematic assessment of flow in daily life. In Csikszentmihalyi, M. and Csikszentmihalyi, I. (Eds.). Optimal Experience: Psychological Studies of Flow in Consciousness (pp. 266-287). Cambridge, England: Cambridge University Press.
    Mithra, P. (1998). 10 ways to destroy a perfectly good game idea. Proceeding of the 1998 CHI Conference on Human Factors in Computing Systems 377. pp. 377. doi: 10.1145/286498.286842
    Voiskounsky, A. E., Mitina, O. V., & Avetisova, A. A. (2004). Playing online games: Flow experience. Psychnology Journal, 2 (3), 259–281.
    Mathwick, C., & Rigdon, E. (2004). Play, flow, and the online search experience. Journal of Consumer Research, 31 (1), 324–332.
    Moustaki, I. and Joreskog, K. and Mavridis, D. (2004). Factor models for ordinal variables with covariate effects on the manifest and latent variables: A comparison of LISREL and IRT approaches. Structural Equation Modeling Journal, 11 (4), 487-513.
    Novak, T. P. & Hoffman, D. L., Yung, Y. F. (1997). Modeling the Structure of the Flow Experience among Web Users. INFORMS Marketing Science and the Internet Mini-Conference. Boston, MA.
    Novak, T. P., Hoffman, D. L., & Yung, Y. F. (2000). Measuring the Customer Experience in Online Environments: A Structural Modeling Approach. Marketing Science, 19 (1), 22-42.
    Obada, D. R. (2013). Flow Theory and Online Marketing Outcomes: a Critical Literature Review. Procedia Economics and Finance, 6, 550-561.
    Park, Y. S., & Han, S. H. (2010). One-handed thumb interaction of mobile devices from the input accuracy perspective. International Journal of Industrial Ergonomics, 40 (6), 746-756.
    Rafaeli, S., & Ariel, Y. (2007). Assessing interactivity in computer-mediated research. In A.N. Joinson, K.Y.A. McKenna, T. Postmes, & U.D. Rieps (Eds.), The Oxford Handbook of Internet Psychology (pp. 71-88). Oxford, England: Oxford University Press.
    Sirdeshmukh, D., Singh, J., & Sabol, B. (2002). Consumer Trust, Value, and Loyalty in Relational Exchanges. Journal of Marketing, 66 (1), 15-37.
    Sweetser, P., & Wyeth, P. (2005). GameFlow: A model for evaluating player enjoyment in games. Computer Entertainment, 3 (3), 1-24.
    Shrum, L. J., Lowrey, T. M., & Liu, Y. (2009). Emerging issues in advertising research. In R. Nabi (Ed.), The SAGE Handbook of Media Processes and Effects (pp. 299-312). Thousand Oaks, CA: Sage Publications.
    Shih, C. H., Shiau, W. L. & Huang, L. C. (2010). Understanding the Bloggers' Continuance Usage: Integrating Flow into the Expectation-Confirmation Theory Information System Model. Proceeding of the PACIS 2010 Proceedings, pp. 1680-1686.
    Shin, D.H., Shin, Y.J., 2011. Why do people play social network games. Computers in Human Behavior, 27 (2), 852–861.
    Voiskounsky, A. E., Mitina, O. V., & Avetisova, A. A. (2004). Playing online games: Flow experience. Psychnology Journal, 2 (3), 259–281.
    Williams, B. M. (1978). A sampler on sampling. New York, NY: Wiley & Sons.
    Yan, Y., Davison, R. M., & Mo, C. (2013). Employee creativity formation: The roles of knowledge seeking, knowledge contributing and flow experience in Web 2.0 virtual communities. Computers in Human Behavior, 29 (5), 1923-1932.
    Zeithaml, V.A., Berry, L.L., Parasuraman, A., 1996. The behavioral consequences of service quality. Journal of Marketing, 60 (2), 31–46.
    Zaman, M., Anandarajan, M., & Dai, Q. (2010). Experiencing flow with instant messaging and its facilitating role on creative behaviors. Computers in Human Behavior, 26 (5), 1009–1018.
    Zhou, T., & Lu, Y. (2011). Examining mobile instant messaging user loyalty from the perspectives of network externalities and flow experience. Computers in Human Behavior, 27 (2), 883-889.
    Zhou, T. (2011). Understanding the effect of flow on user adoption of mobile games. Pers Ubiquit Comput, 17 (4), 741-748.

    下載圖示
    QR CODE