簡易檢索 / 詳目顯示

研究生: 陳家貫
Jia Guan Chen
論文名稱: 不同晶粒大小及氮摻雜鑽石薄膜的拉曼光譜、紅外線光譜及功函數特性研究
Raman Spectroscopy ,FTIR Characterization and Workfunction Measurement of NCD ,MCD and Nitrogen Doped UNCD
指導教授: 賈至達
Chia, Chih-Ta
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 67
中文關鍵詞: 鑽石拉曼光譜紅外線光譜功函數晶粒大小
英文關鍵詞: diamond, Raman Spectroscopy, FTIR, workfunction, grain size
論文種類: 學術論文
相關次數: 點閱:283下載:56
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用微波電漿化學汽相沈積法成長鑽石薄膜於矽基板
    上,所成長的鑽石薄膜晶粒大小範圍從大約5 奈米(UNCD)至1 微米
    (MCD)之間。這些不同晶粒大小的鑽石薄膜是以甲烷/氬氣/氮氣及甲
    烷/氫氣的混合氣體,藉著改變氣體的比例、及成長時間等參數來控
    制晶粒的成長。並且以電子掃瞄顯微鏡來決定晶粒的半徑大小。
    這些成長的鑽石薄膜使用紫外光(325nm)及可見光(514nm)
    拉曼光譜進行量測。非結晶SP2 鍵結的碳原子及SP3 鍵結的結晶鑽石
    的拉曼散射強度隨著晶粒大小的不同會有強度及拉曼位移上的變化
    情形,並且此拉曼強度也與入射光的能量有關。而位於1332cm-1 的
    鑽石拉曼訊號與晶粒尺寸大小的關係中可以發現,在微米級的鑽石薄
    膜中可以量測出但卻無法在15nm 晶粒以下的鑽石薄膜觀察到。而對
    於不同入射光能量的拉曼量測而言,因為可見光光子能量接近π 能
    態,所以只可激發SP2 態能階的碳原子。而紫外光光子能量較高,大
    於π 能態與σ 能態,而可同時激發SP2 及SP3 鍵結的碳原子,所以
    可以得到量測出SP3 鍵結的結晶鑽石訊號。
    此外,我們對鑽石薄膜表面進行酸化的處理,使其表面的鍵結改
    變。並且進行功函數的量測,發現功函數與表面的SP2 碳原子以及
    CHx 的結構相關,這些功函數的變化我們以拉曼光譜與紅外線光譜量
    測來探討功函數變化原因,而對於不同摻雜的超奈米結晶鑽石
    (UNCD)而言,摻雜量的不同造成結構改變以及CHx 的變化,對於功
    函數的影響也在本論文中討論,由這些量測我們發現奈米結晶鑽石
    (UNCD)在成長方式以及所呈現出的結構及表面特性方面皆有許多異
    於NCD、及MCD 的地方。

    Microwave-plasma-chemical-vapor-deposition method was used to diamond films on silicon substrate with the size from 5 nm to 1μm. The different grain size diamond films has been synthesized by microwave plasmas fed with CH4/Ar/N2 and CH4/H2 mixtures by varying the proportion of gas mixtures and the growth time. Scanning electron microscope is used to determine the grain size of the grown diamond film.
    These diamond films have been examined by using ultraviolet (UV,325 nm) and visible (514nm) micro-Raman spectroscopy. Both the Raman intensity of amorphous sp2-bonded carbon and the strength of the 1332 cm-1 sp3-bonded diamond phonon are found to vary considerably as functions of the grain size of diamond film and the incident photon energy. The 1332 cm-1 diamond peak can be found in micro diamond and cannot be observed for grain size under 500nm in visible Raman
    spectroscopy. Visible Raman spectroscopy is more sensitive to sp2 sites,as visible photons preferentially excite their π states. UV Raman spectroscopy, with its higher photon energy, excites both the π and the σ states and so is able to probe both the sp2 and sp3 sites, allowing a direct probe of the sp3 bonding.
    After chemical acid cleaning procedure, oxygen ions were absorbed on the surface of diamond films. The oxygen adsorption caused the surface workfunction of diamond films down bending. The work function also shows a strong correlation with the grain size of diamond films.

    目錄..................................................... IV 表目錄................................................... VI 圖目錄...................................................VII 第一章 緒論.................................................1 1.1 研究動機...............................................1 1.2 鑽石材料的特性..........................................2 1.2.1 鑽石的結構............................................2 1.2.2 鑽石的能階............................................2 第二章 文獻探討.............................................5 2.1 拉曼光譜簡介............................................5 2.1.1 拉曼光譜原理..........................................5 2.1.2 鑽石的拉曼光譜特徵....................................7 2.2 紅外線光譜.............................................11 2.2.1 紅外線光譜簡介.......................................11 2.2.2 紅外線吸收光譜的理論..................................11 2.2.3 鑽石的紅外線吸收光譜..................................12 2.3 鑽石的表面鍵結.........................................14 2.3.1 鑽石表面的官能基.....................................14 2.3.2 氫原子表面鍵結.......................................14 2.3.3 氧原子表面鍵結.......................................15 第三章 實驗方法與步驟.......................................18 3.1 鑽石薄膜製備...........................................18 3.1.1 化學氣相沉積成長鑽石薄膜的原理.........................18 3.1.2 鑽石薄膜的製作.......................................18 3.2 鑽石薄膜表面酸化處理....................................20 3.3 拉曼光譜(Raman spectroscopy)量測.......................21 3.4 紅外線光譜(FTIR)量測.................................23 3.5 功函數(workfunction)量測...............................24 第四章 實驗結果與討論.......................................27 4.1 電子顯微鏡影像圖.......................................27 4.1.1 表面處理前的電子顯微鏡影像圖..........................27 4.1.1 表面處理後的電子顯微鏡影像圖..........................31 4.2 拉曼光譜分析...........................................34 4.2.1 表面處理前的拉曼光譜..................................34 4.2.2 表面處理後的拉曼光譜..................................40 4.3 紅外線光譜分析.........................................43 4.3.1 酸化前紅外線吸收光譜..................................43 4.3.2 酸化後紅外線吸收光譜..................................51 4.4 功函數分析.............................................54 4.4.1 酸化前功函數.........................................54 4.4.2 酸化後功函數.........................................56 第五章 綜合討論............................................63 5.1 拉曼光譜與功函數的關連性................................63 第六章 結論................................................66 6.1 拉曼光譜量測...........................................66 6.2 紅外線光譜量測.........................................66 6.3 功函數量測.............................................67 參考文獻..................................................68

    [1] F. C. Champion, “Electronic Properties of Diamonds” , U.K.London, Butterworths, (1963)
    [2] M. W. Geis, J. A. Gregory, and B. B. Pate, “Capacitance-voltage measurements on metal-SiO2-diamond structures fabricated with(100)and (111)oriented substrates” , IEEE Trans. Electron Devices.38 (1991), 619-626
    [3] W. Piekarczyk, “Crystal growth of CVD diamond and some of its peculiarities” , Crystal Research and Technology. 34 (1999),553-563
    [4] Paul K. Chu, Liuhe Li, “Characterization of amorphous and nanocrystalline carbon film” , Materials Chemistry and Physics 96(2006), 253-277
    [5] A. C. Ferrari, J. Robertson, “Origin of the 1150cm-1 Raman mode in nanocrystalline diamond” , Physical Review B 63 (2001),No.121405
    [6] Robert F. Davis, Diamond Films and Coatings: Development,Properties, and Applications, (1992)
    [7] J. Van Der Weide, “Negative-electron-affinity effects on the diamond (100) surface” , Physical Review B, vol. 50 (1994),5803-5806
    [8] M. C. Chen, S. D. Tsai, M. R. Chen, S. Y. Ou, W.-H. Li, and K. C.Lee, “Effect of silver-nanoparticle aggregation on
    surface-enhanced Raman scattering from benzoic acid” , Physical Review B 51 (1995), 4507-4515
    [9] 謝雲生, 雷射拉曼光譜簡介, 物理雙月刊, 7 卷1 期 (1985 年8 月), 25-28
    [10] Paul K. Chu, Liuhe Li, “Characterization of amorphous and nanocrystalline carbon films” , Materials Chemistry and Physics 96(2006), 253-277
    [11] A. C. Ferrari, and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon” , Physical Review B, vol. 61(2000), 14095-14107
    [12] Z. Sun, J. R. Shi, B. K. Tay, S. P. Lau, “UV Raman characteristics of nanocrystalline diamond films with different grain size” ,Diamond and Related Materials 9 (2000), 1979-1983
    [13] A. C. Ferrari, and J. Robertson, “Origin of the 1150-cm-1 Raman mode in nanocrystalline diamond” , Physical Review B, vol. 63(2001), No.121405
    [14] A. Krüger, F. Kataoka, M. Ozawa, T. Fujino, Y. Suzuki, A. E.Aleksenskii, A. Ya. Vul’, and E.Õsawa, “Unusually tight aggregation in detonation nanodiamond: Identification and disintegration” , Carbon 43 (2005), 1722-1730
    [15] A. M. Zaitsev, “Optical properties of diamond : A Data
    Handbook” , Springer, (2001)
    [16] Bhargava S., Bist, H. D., Sahli, S., Aslam, M. & Tripathi, H. B.,“Diamond ploytypes in the chemical vapour deposited films” ,Appl. Phys. Lett. 67, (1995), 1706-1708
    [17] Loh M. H. & Cappelli M. A., “Supersonic DC-arcjet synthesis of diamond” , Diamond Relat. Mater. 2 (1993), 454-461
    [18] Steven Prawer and Robert J. Nemanich, ”Raman spectroscopy of diamond and doped diamond” , Phil. Trans. R. Soc. Lond. A 362(2004), 2537-2565
    [19] Rossi M. C, Salvatori S., Galluzzi F., Somma F., Montereali R.M., ”Diamond photoluminescence spectra: Dependence on excitation energy and microstructure” , Diamond and Related Materials, Vol. 7 (1998), 255-260
    [20] Bormett R. W., Asher S. A., Witowski R. E., Partlow W. D.,Lizewski R. & Pettit F., “Ultraviolet Raman spectroscopy
    characterizes chemical vapor deposition diamond film growth andoxidation” , J. Appl. Phys. 77 (1995), 5916-5923
    [21] 翁瑞裕, 紅外線光譜分析法, (2001)
    [22] J. Robertson, “Diamond-like amorphous carbon” , Mater. Sci. Eng.Rep. 37 (2002), 129-281
    [23] B. Dischler, A. Bubenzer, P. Koidl, “Hard carbon coatings with low optical absorption” , Appl. Phys. Lett. 42 (8) (1983), 636-640
    [24] J. Robertson, M. J. Rutter, ”Band Diagram of Diamond and Diamond-like Carbon Surface” , Diamond and Related Materials 7(1998), 620-625
    [25] J. E. Field, “The Properties of Natural, and Synthetic Diamond” ,Harcourt Brace Jovanovich, Publishers, New York, (1992), p.193
    [26] B. Dischler, in Amorphous Hydrogenated Carbon Films EMRS Symp, Proc. vol. 17, P. Koidl and P. Oelhafen (eds.), Les Editiones de Physique, Paris, (1987), p.198
    [27] A. Zomorrodian, A. Mesarwi, N. J. Wu, and A. Ignatiev, “XPS Oxygen Line Broadening in Lead Zirconium Titanate and Realated Materials” , Appl. Surf. Sci. 90 (1995), 343-348
    [28] Jerry L. Whitten, Pietro Cremaschi, ”Effects of Oxygen on Surface Reconstruction of Carbon” , Appl. Surf. Sci. 75 (1994), 45-50
    [29] 江明政, “偏壓輔助鑽石膜成核特性之研究” , 國立成功大學
    材料科學及工程學系博士論文, 第一章, 民國九十年, p.6
    [30] 顏澤宇, “硼摻雜在偏壓下對鑽石膜沈積的影響" , 國立台灣
    師範大學物理學系碩士論文, 第三章, 民國九十三年, p.32
    [31] Anke Krüger, Yuejiang Liang, Gerald Jarre, and Jochen
    71 Stegk, ”Surface fictionalization of detonation diamond suitable for biological Applications” , J. Mater. Chem. 16 (2006), 2322-2328
    [32] A. T. Rakhimov, N. V. Suetin, E. S. Soldatov, M. A. Timofeyev,A.S.Trifonov, V. V. Khanin, and A. Silzars, “Scanning tunneling microscope study of diamond films for electron field emission” , J. Vac. Sci. Technol. B 18 (2000), 76-81
    [33] J. B. Cui, J. Ristein, and L. Ley, “Low threshold electron emission from diamond” , Physical Review B 60 (1999), 16135-16142

    QR CODE