簡易檢索 / 詳目顯示

研究生: 蔡永賢
Yung-Hsien Tsai
論文名稱: 雷射直寫式光波導之毛邊研究
Study of Sidewall Roughness on Direct Laser Writing Optical Waveguide
指導教授: 曹士林
Tsao, Shyh-Lin
江家慶
Chiang, Chia-Chin
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 102
中文關鍵詞: 波導毛邊雷射直寫
英文關鍵詞: waveguide roughness, direct laser writing
論文種類: 學術論文
相關次數: 點閱:197下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文為研究製程所造成的光波導之毛邊現象,並且利用雷射直寫的方式來製作光波導。我們首先利用Nd:YVO4雷射在石英玻璃上寫出埋入式波導,經由改變不同的雷射功率及寫入速度,我們得到最佳的波導形式。此外,我們也使用長脈衝雷射(Nd:YAG)及短脈衝雷射(Nd:YVO4)兩種雷射在矽晶絕緣體 (SOI) 晶圓上寫出脊狀光波導,我們亦在矽晶絕緣體晶圓上寫出不同角度折線的波導,並且發現到由於矽晶格的影響,會使得在不同角度所寫出來的波導會有不同的毛邊現象。並於此論文中,對於矽晶絕緣體晶圓上在長脈衝雷射及短脈衝雷射的加工影響提出比較與探討。

    This thesis is a research on the procedure of the roughness in regards to the waveguide’s sidewall utilizing direct writing laser to fabricate optical waveguides. We will first use Nd:YVO4 laser to writing buried channel waveguides on quartz glass. We obtained the optimum waveguide by experimenting with different power level of the laser and the speeds in writing. Moreover, we used two types of lasers, the long pulse (Nd:YAG) and short pulse (Nd:YVO4 ) laser, to write rib waveguide on silicon on insulator (SOI) wafer. We also wrote waveguides with reflections from different angles on the SOI. After doing so, we discovered that because of the silicon’s lattice structure, the waveguides with different roughness are obtained when written at different angles. Within the contents of this thesis, we have compared and examined the influence of the use of the long pulse and the short pulse laser machining on SOI.

    Chapter 1 Introduction…………………………………......……1 Chapter 2 Optical Waveguide…………………………..…..…7 2-1 Basic Theory of Wave Propagation in Waveguide...…………….....……8 2-2 Common Analysis Methods for Optical Waveguide…………….……..12 2-3 Analysis of Optical Waveguide Fabrication Caused Defects………….14 2-3-1 Sidewall’s Roughness in Straight Waveguide ...………………...14 2-4 Simulation of Discontinuities in Optical Waveguide…………………17 2-4-1 Simulation of Waveguide Fabrication Caused Defects .………...17 2-4-2 Simulation of a Regular Waveguide’s Sidewall Defects…….19 2-5 Summary.……………...…...…………………………………..………21 Chapter 3 Laser Direct-writing Optical Waveguides in Fused Quartz Glass…….…………………..……..…..…29 3-1 Introduction of Laser-Fabricated Waveguide Devices....…...…30 3-1-1 Laser Direct-writing of Buried Waveguides in Glass………….31 3-2 Direct-writing Device Fabrication Process…………………….…..…34 3-2-1 Neodymium-Doped Yttrium Orthovanadate (Nd:YVO4) Laser...35 3-2-2 Setup for Waveguide Writing………………………………….....36 3-3 Results of Direct-writing Channel Waveguide in Fused Quartz Glass.. 37 3-3-1 Analysis of Waveguides with Writing Speed of 5 mm/s………...37 3-3-2 Analysis of Waveguides with Writing Speed of 25 mm/s and 50mm/s…………………………………………………………39 3-4 Discussion and Summary.......…………………………………..…41 Chapter 4 Laser Machining for SOI Wafer…………………58 4-1 Introduction of Laser Micromachining………………………………59 4-2 Fabrication Process of Direct-Writing Rib Waveguide Based on SOI…62 4-3 Results of Direct-Writing Rib Waveguide Based on SOI……………65 4-3-1 Analysis of the Writing Waveguides on SOI by Nd:YVO4 Laser.65 4-3-2 Analysis of the Writing Waveguides on SOI by Nd:YAG Laser..67 4-4 Discussion and Summary……………………………………………70 Chapter 5 Conclusions…………………………………………….90 References..……………………………………………………………..93

    [1] V. Gazis, “Evolving Perspectives of 4th Generation Mobile Communication Systems,” IEEE PIMRC 2002, Coimbra, Portugal, Sept. 2002.
    [2] Munoz, M. Rubio, C.G., “A new model for service and application convergence in B3G/4G networks,” IEEE, Wireless Communications, Volume: 11, Issue: 5, pp. 6- 12, Oct. 2004.
    [3] Thomas KlotzbUcher, Martin Popp, Torsten Braune, Jens Haase, Anne Gaudron, Ingo Smaglinski, Thomas Paatzsch, Hans-Dieter Bauer, Wolfgang Ehrfeld, “Custom Specific Fabrication of Integrated Optical Devices by Excimer Laser Ablation of Polymers,” Proceedings of SPIE Vol. 3933, 2000.
    [4] Kazuto Noguchi, Akira Okada, Shin Kamei, Sen-ichi Suzuki, and Morito Matsuoka, “Temperature Control-Free Full-Mesh Wavelength Routing Network (AWG-STAR) With CWDM AWG-Router,” J. Lightwave. Technol., VOL. 23, NO. 4, APRIL 2005.
    [5] I. M. White, E. S. Hu, Y. L. Hsueh, K. Shrikhande, M. S. Rogge, and L. G. Kazovsky, “Demonstration and system analysis of the HORNET architecture,” J. Lightwave. Technol., vol. 21, no. 11, pp. 2489–2498, Nov. 2003.
    [6] S. Baroni, P. Bayvel, R. J. Gibbens, and S. K. Korotky, “Analysis and design of resilient multifiber wavelength-routed optical transport networks,” J. Lightwave. Technol., vol. 17, no. 5, pp. 743–758, May 1999.
    [7] R. E. Wagner, L. Nederlof, M. Vaughn, S. De Maesschalck, D. Cotter, and B. Hemenway, “Interconnection of metropolitan and backbone networks,” Proc. Optical Fiber Communications Conf. (OFC 2003), Paper ThH1, pp. 479–481.
    [8] M. K. Smit and C. van Dam, “PHASAR-based WDM devices: Principles, design, and application,” IEEE J. Sel. Topics Quantum Electron., vol. 2, no. 2, pp. 236–250, Jun. 1996.
    [9] S. Janz, M. Pearson, B. Lamontagne, L. Erickson, A. Delâge, P. Cheben, D.-X. Xu, M. Gao, A. Balakrishnan, J. Miller, and S. Charbonneau, “Planar waveguide echelle gratings: An embeddable diffractive elements for photonics integrated circuits,” Proc. Optical Fiber Communication Conf., OSA Tech. Dig., Anaheim, CA, 2002, vol. 70, pp. 69–70.
    [10] Y.-H. Lin and S.-L. Tsao, “Improved design of a 64×64 arrayed waveguide grating based on silicon-on-insulator substrate,” IEE Proceedings Optoelectronics, Volume 153, Issue 2, p. 57-62, April 2006.
    [11] I. Bennion, A. G. Hallam, and W. J. Stewart, “Optical waveguide components in organic photochromic materials,” Rad. Electron. Eng., vol. 53, no. 9, pp. 313–320, 1983.
    [12] M. Svalgaard, “Direct writing of planar waveguide power splitters and directional couplers using a focused ultraviolet laser beam,” Electron. Lett., vol. 33, no. 20, pp. 1694–1695, 1997.
    [13] L. Eldada, L. W. Shacklette, R. A. Norwood, and J. T. Yardley, “Nextgeneration polymer photonic devices,” SPIE, Sol-Gel and Polymer Photonic Devices, 1997, vol. CR68, pp. 207–227.
    [14] Louay Eldada, Chengzeng (Chuck) Xu, Kelly M. T. Stengel, Lawrence W. Shacklette, and James T. Yardley, “Laser-Fabricated Lo w-Los s Single-Mode Raised-Rib Waveguiding Devices in Polymers,” J. Lightwave. Technol., VOL. 14, NO. 7, JULY 1996.
    [15] Arshad K. Mairaj, Ping Hua, Harvey N. Rutt, and Daniel W. Hewak, “Fabrication and Characterization of Continuous Wave Direct UV (λ = 244 nm) Written Channel Waveguides in Chalcogenide (Ga:La:S) Glass,” J. Lightwave. Technol., VOL. 20, NO. 8, AUGUST 2002.
    [16] Catalin Florea and Kim A. Winick, “Fabrication and Characterization of Photonic Devices Directly Written in Glass Using Femtosecond Laser Pulses,” J. Lightwave. Technol., VOL. 21, NO. 1, JANUARY 2003.
    [17] J. Jiang; C.L. Callender; J.P. Noad; R.B. Walker; S.J. Mihailov; J. Ding; M. Day; “All-polymer photonic devices using excimer laser micromachining,” IEEE, Photonics Technology Letters, Volume 16, Issue 2, Page(s):509 - 511, Feb. 2004.
    [18] Van Steenberge, G.; Geerinck, P.; Van Put, S.; Van Koetsem, J.; Ottevaere, H.; Morlion, D.; Thienpont, H.; Van Daele, P., “MT-compatible laser-ablated interconnections for optical printed circuit boards,” J. Lightwave. Technol., Volume 22, Issue 9, Page(s):2083 – 2090, Sept. 2004.
    [19] Povolotskiy, A.; Shimko, A.; Manshina, A.; Bivona, S.; Ferrante, G., “2D and 3D laser writing for integrated optical elements creation,” Fibres and Optical Passive Components, 2005. Proceedings of 2005, Issue, 22-24, Page(s): 98 – 102, June 2005.
    [20] McCarthy, A. Suyal, H. Walker, A.C., “Fabrication and characterisation of direct laser-written multimode polymer waveguides with out-of-plane turning mirrors,” 2005 Conference on Lasers and Electro-Optics Europe, 2005. CLEO/Europe. 12-17 June 2005.
    [21] Mendez, C.; Torchia, G.A.; Delgado, D.; Arias, I.; Roso, L., “Fabrication and characterization of Mach-Zehnder devices in LiNbO3 written with femtosecond laser pulses,” Fibres and Optical Passive Components, 2005. Proceedings of 2005, Issue, 22-24, Page(s): 131 – 134, June 2005.
    [22] Torchia, G.A. Mendez, C. Arias, I. Roso, L. Piqueras, J. Ruiz, E. Pernas, P.L., “Ultrafast-infrared-laser writing SiON channel waveguides,” 2005 Spanish Conference on, This paper appears in: Electron Devices, pp.335- 337, 2-4 Feb. 2005.
    [23] P.J. Moreira; P.V.S. Marques; A.P. Leite, “Hybrid sol-gel channel waveguide patterning using photoinitiator-free materials,” Photonics Technology Letters, IEEE, Volume 17, Issue 2, pp.:399 – 401, Feb. 2005.
    [24] T. C. Sum, A. A. Bettiol, Catalin Florea and F.Watt, “Proton-Beam Writing of Poly-Methylmethacrylate Buried Channel Waveguides,” J. Lightwave. Technol., VOL. 24, NO. 10, OCTOBER 2006.
    [25] Degl'Innocenti, R.; Reidt, S.; Guarino, A.; Rezzonico, D.; Poberaj, G. Günter, P., “Micromachining of ridge optical waveguides on top of He+-implanted β-BaB2O4 crystals by femtosecond laser ablation,” Journal of Applied Physics, Volume 100, Issue 11, pp. 113121-113121-5 (2006).
    [26] Osellame, R.; Chiodo, N.; Della Valle, G.; Cerullo, G.; Ramponi, R.; Laporta, P.; Killi, A.; Morgner, U.; Svelto, O., “Waveguide lasers in the C-band fabricated by laser inscription with a compact femtosecond oscillator,” Selected Topics in Quantum Electronics, IEEE Journal of, Volume 12, Issue 2, pp.277–285, March-April 2006.
    [27] H. Kogelnik and V. Ramaswamy, “Scaling Rules for Thin-Film Optical Waveguides,” Applied Optics, Vol. 13, No. 8, pp. 1857–1862, August 1974.
    [28] P. K. Tien , “Light Waves in Thin Films and Integrated Optics,” Applied Optics, Vol. 10, No. 11, pp. 2395–2413, November 1971.
    [29] M. Koshiba, “Optical waveguide theory by the finite element method,” Tokyo : KTK Scientific ; Dordrecht ; Boston : Kluwer Academic, c1992.
    [30] M. Koshiba, “Optical waveguide analysis,” New York : McGraw-Hill, 1992.
    [31] K. Kawano and K. Tsutomu, “Introduction to optical waveguide analysis : solving Maxwell's equations and the Schrodinger equation,” New York ; Chichester : J. Wiley, c2001.
    [32] K. Iizuka , “Element of photonics Volume I: In Free Space and Special,” Copyright 2002 John Wiley & Sons.
    [33] Max Ming-Kang Liu, “Principles and applications of optical communications,” IRWIN, USA, 1996.
    [34] MD Feit, JA Fleck, “Light propagation in graded-index fibers,” Appl. Opt, 1978.
    [35] Lars Thylén, “The beam propagation method: an analysis of its applicability,” Optical and Quantum Electronics, Volume 15, Number 5, 1983.
    [36] O. C. Zienriewicz, “The Finite Element Method.3rd. ed.,” McGraw-Hill, New York, 1973.
    [37] Y Chung, N Dagli, “An assessment of finite difference beam propagation method,” IEEE Journal of, Quantum Electronics, Volume: 26, Issue: 8, 1990.
    [38] M.Koshiba and Y.Tsuji, “A wide-angle finite-element beam propagaton method,” IEEE Photon. Technol. Lett., vol. 8, pp. 1208-1210, Sept. 1996.
    [39] Tymon Barwicz and Hermann A. Haus, Life Fellow, “Three-Dimensional Analysis of Scattering Losses Due to Sidewall Roughness in Microphotonic Waveguides,” J. Lightwave. Technol., VOL. 23, NO. 9, SEPTEMBER 2005.
    [40] R. W. Gruhlke and D. G. Hall, “Comparison of two approaches to the waveguide scattering problem: TM polarization,” Appl. Opt., vol. 23, no. 1, pp. 127–133, Jan. 1984.
    [41] F. Ladouceur, J. D. Love, and T. J. Senden, “Effect of side wall roughness in buried channel waveguides,” Proc. Inst. Elect. Eng. Optoelectron., vol. 141, no. 4, pp. 242–248, Aug. 1994.
    [42] T. Barwicz and H. I. Smith, “Evolution of line-edge-roughness during fabrication of high index-contrast microphotonic devices,” J. Vac. Sci. Technol. B, vol. 21, no. 6, pp. 2892–2896, Nov./Dec. 2003.
    [43] Poulton, C.G. Koos, C. Muller, M. Glockler, F. Wang, J. Fujii, M. Leuthold, J. Freude, W. “Sidewall roughness and deformations in high index-contrast waveguides and photonic crystals,” IEEE LEOS, Volume: 2, pp. 949- 950 Vol.2, Nov. 2004.
    [44] J. C. Novarini and J. W. Caruthers, “Numerical modeling of acoustic-wave scattering from randomly rough surfaces: an image model,” The Journal of the Acoustical Society of America, Volume 53, Issue 3, pp. 876-884, March 1973.
    [45] J A Ogilvy and J R Foster, “Rough surfaces: gaussian or exponential statistics?” J A Ogilvy et al 1989 J. Phys. D: Appl. Phys. 22 1243-1251.
    [46] Frédéric Grillot, Laurent Vivien, Suzanne Laval, and Eric Cassan , “Propagation Loss in Single-Mode Ultrasmall Square Silicon-on-Insulator Optical Waveguides ,” J. Lightwave. Technol., VOL. 24, NO. 2, FEBRUARY 2006.
    [47] C. G Poulton, C. Koos, M Fujii, A. Pfrang, T. Schimmel, Jurg Leuthold, and Wolfgang Freude, “Radiation Modes and Roughness Loss in High Index-Contrast Waveguides,” IEEE Journal of Selected Toptics in Quantum Electronics, Volume: 12, Issue: 6, Part 1 pp.1306-1321, 2006.
    [48] Kevin K. Lee, Desmond R. Lim, Hsin-Chiao Luan, Anuradha Agarwal, James Foresi, and Lionel C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Applied Physics, LettersVolume 77, Issue 11, pp. 1617-1619,September 11, 2000.
    [49] Opti-Wave BPM_CAD, Waveguide Optics Modeling Software System – Opti-Wave Corporation.
    [50] I. Bennion, A. G. Hallam, and W. J. Stewart, “Optical waveguide components in organic photochromic materials,” Rad. Electron. Eng., vol. 53, no. 9, pp. 313–320, 1983.
    [51] M. Svalgaard, “Direct writing of planar waveguide power splitters and directional couplers using a focused ultraviolet laser beam,” Electron. Lett., vol. 33, no. 20, pp. 1694–1695, 1997.
    [52] L. Eldada, L. W. Shacklette, R. A. Norwood, and J. T. Yardley, “Nextgeneration polymer photonic devices,” in SPIE, Sol-Gel and Polymer Photonic Devices, vol. CR68, pp. 207–227, 1997.
    [53] Keisuke Hata, Kiyotaka Shibata, Toshihiro Okabe, Kouji Saito and Masahisa Otsuka, “Laser Beam Machining of Porous Woodceramics,” Journal of Porous Materials 5, pp. 65–75 (1998).
    [54] Wilbur J. Reichman, Denise M. Krol, Lawrence Shah, Fumiyo Yoshino, Alan Arai Shane M. Eaton and Peter R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” Journal of Applied Physics 99, 123112 (2006).
    [55] W. Hong, H. J. Woo, H. W. Choi, Y. S. Kim, and G. D. Kim, “Optical property modification of PMMA by ion-beam implantation,” Appl. Surf. Sci., vol. 169–170, pp. 428–432, Jan. 2001.
    [56] D. M. Ruck, S. Brunner, K. Tinschert, and W. F. X. Frank, “Production of buried waveguides in PMMA by high energy ion implantation,” Nucl. Instrum. Methods Phys. Res. B, Beam Interact. Mater. At., vol. 106, no. 1–4, pp. 447–451, Dec. 1995.
    [57] Svalgaard, M. , “Direct writing of planar waveguide power splitters and directional couplers using a focused ultraviolet laser beam,” Electronics Letters, Vol. 33 No. 20, September 1997.
    [58] Davis, K.M., bliura, K., Sobimoto, N., and Hirao, n., “Writing Waveguides in Glass with a Femtosecond laser,” Opt. Lett 21, 1729-1731.
    [59] Roberto Osellame, Nicola Chiodo, Giuseppe Della Valle, Giulio Cerullo, Roberta Ramponi, Paolo Laporta, Alexander Killi, Uwe Morgner, Orazio Svelto, “Waveguide Lasers in the C-Band Fabricated by Laser Inscription With a Compact Femtosecond Oscillator,” IEEE Journal of Selected Toptics in Quantum Electronics, VOL. 12, NO. 2, MARCH/APRIL 2006.
    [60] K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett., vol. 71, pp. 3329–3331, Dec. 1997.
    [61] K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids, vol. 239, pp. 91–95, Oct. 1998.
    [62] D. Homoelle, S. Wielandy, A. Gaeta, N. F. Borrelli, and C. Smith, “Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses,” Opt. Lett., vol. 24, pp. 1311–1311, Sep. 1999.
    [63] K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, “Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,” Opt. Lett., vol. 26, pp. 1516–1518, Oct. 2001.
    [64] Y. Kondo, K. Nouchi, T. Mitsuyu, M.Watanabe, P. G. Kazansky, and K. Hirao, “Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pules,” Opt. Lett., vol. 24, pp. 646–648, May 1999.
    [65] K. Kawamura, N. Sarukura, and M. Hirano, “Holographic encoding of fine-pitched micrograting structures in amorphous SiO thin films on silicon by a single femtosecond laser pulse,” Appl. Phys. Lett., vol. 78, pp. 1038–1040, Feb. 2001.
    [66] L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun., vol. 171, pp. 279–284, Dec. 1999.
    [67] Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K.Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett., vol. 36, pp. 226–227, Feb. 2000.
    [68] http://www.coherent.com/downloads/NdYVO4_DS.pdf.
    [69] EKSPLA company, PL10100 series industrial grade diode pumped picosecond laser.
    [70] R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto and G. L. Eesley, “Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett. 58, 1680 - 1683 (1987).
    [71] a. zoubir, l. shah, k. Richardson and m. richardson, “Practical uses of femtosecond laser micro-materials processing,” Appl. Phys. A 77, 311–315 (2003).
    [72] Chen J.K., Beraun J.E. and Tham C.L., “INVESTIGATION OF THERMAL RESPONSE CAUSED BY PULSE LASER HEATING,” Numerical Heat Transfer Part A: Applications, Volume 44, Number 7, pp. 705-722(18), November 2003.
    [73] Bernhard Klim, “Micromachining with industrial picosecond lasers,” Laser Technik Journal, Volume 4, Issue 1, Pages: 40-43, January 2007.

    QR CODE