研究生: |
鄭柔 Cheng, Jou |
---|---|
論文名稱: |
以布料模擬濾波(CSF)進行光達點雲分類之研究-以洛杉磯郡為例 Point Cloud Classification Using Cloth Simulation Filter Algorithm-A Case Study of Los Angeles County |
指導教授: |
王聖鐸
Wang, Sendo |
口試委員: |
徐百輝
Hsu, Pai-Hui 周學政 Chou, Hsueh-Cheng 王聖鐸 Wang, Sendo |
口試日期: | 2023/01/17 |
學位類別: |
碩士 Master |
系所名稱: |
地理學系地理碩士在職專班 Department of Geography_Continuing Education Master's Program of Geography |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 51 |
中文關鍵詞: | 空載光達 、點雲分類 、分類演算法 、坡度分析 |
英文關鍵詞: | Airborne LiDAR point cloud, point cloud classification, ground filtering algorithms, slope analysis |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202300248 |
論文種類: | 學術論文 |
相關次數: | 點閱:103 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著光達技術進步,結合全球定位系統、慣性系統的運用。掃描後的點雲和產製數值地形模型的成果精度逐漸提升。產製數值地形模型前需要先將點雲進行地面點分類,目前業界進行點雲分類使用半自動化方式。原始資料先經由人工去除明顯高低雜點,再透過軟體設定參數自動化分類地面點與非地面點。分類成果會因地形、地貌、坡度差異,執行演算法時導致成果品質有異。本研究根據不同坡度組成的範圍區進行點雲分類參數調整,選洛杉磯郡不同坡度比例組成的實驗區進行參數設定分類測試,比較專業軟體之實驗成果和美國地質調查局網站的已知分類值差異性。透過參數設定尋找該不同坡度適合的數值,提升實際分類效率和精度品質。探索參數設定對於不同坡度的影響,演算法之細項參數對於地面點的萃取的意義及因果關係。
With the progress of lidar technology, global position system and inertial measurement unit, the accuracy of point cloud and the digital elevation model has been gradually improved. Nowadays, survey teams usually use a semi-automatic method for point cloud classification. First of all, analysts remove the high and low noise points from the original data manually. Furthermore, setting the parameters in the professional software is the next step for automatically classifying the ground points and non-ground points. Due to the difference in terrain, relief and slopes, even employing the same algorithms may cause the different result of classification. In the study, the parameters are adjusted to classify the point cloud data which areas are composed of different slope types in Los Angeles County. Compare the results of the experimental ground points in Cloud Compare and the known classification original classification values on the USGS’s website. The appropriate parameters for the different slopes can improve the classification efficiency and accuracy quality. Explore the impact of parameters settings to ground point extraction and check the significance of different kind of algorithms.
Akel, N. A., Filin, S., & Doytsher, Y. (2007). Orthogonal polynomials supported by region growing segmentation for the extraction of terrain from lidar data. Photogrammetric Engineering & Remote Sensing, 73(11), 1253-1266.
Baltsavias, E. P. (1999). Airborne laser scanning: basic relations and formulas. ISPRS Journal of photogrammetry and remote sensing, 54(2-3), 199-214.
Chapman, J., Hung, I.-k., & Tippen, J. (2010). Evaluating TIFFS (Toolbox for Lidar Data Filtering and Forest Studies) in deriving forest measurements from Lidar data.
Chen, Q. (2007). Airborne lidar data processing and information extraction. Photogrammetric engineering remote sensing, 73(2), 109.
Fernandez, J., Singhania, A., Caceres, J., Slatton, K., Starek, M., & Kumar, R. (2007). An overview of lidar point cloud processing software. GEM Center Report No. Rep_-12-001, University of Florida, 27.
Garnett, R., & Adams, M. D. (2018). LiDAR—A technology to assist with smart cities and climate change resilience: A case study in an urban metropolis. ISPRS International Journal of Geo-Information, 7(5), 161.
Kraus, K., & Pfeifer, N. (1998). Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS Journal of Photogrammetry and remote Sensing, 53(4), 193-203.
Lohmann, P., Koch, A., & Schaeffer, M. (2000). Approaches to the filtering of laser scanner data. International Archives of Photogrammetry and Remote Sensing, 33(B3/1; PART 3), 540-547.
Polat, N., & Uysal, M. (2015). Investigating performance of Airborne LiDAR data filtering algorithms for DTM generation. Measurement, 63, 61-68.
Stoker, J. M., Greenlee, S. K., Gesch, D. B., & Menig, J. C. (2006). CLICK: The new USGS center for lidar information coordination and knowledge. Photogrammetric engineering and remote sensing, 72(6), 613-616.
Sulaiman, N. S., Majid, Z., & Setan, H. (2010). DTM generation from LiDAR data by using different filters in open–source software. Geoinformation Science Journal, 10(2), 89-109.
Yu, R., Luo, Y., Zhou, Q., Zhang, X., Wu, D., & Ren, L. (2021). A machine learning algorithm to detect pine wilt disease using UAV-based hyperspectral imagery and LiDAR data at the tree level. International Journal of Applied Earth Observation and Geoinformation, 101, 102363.
Zhang, K., & Whitman, D. (2005). Comparison of three algorithms for filtering
airborne lidar data. Photogrammetric engineering remote sensing, 71(3), 313-324.
Zhang, W., Qi, J., Wan, P., Wang, H., Xie, D., Wang, X., & Yan, G. (2016). An easy-to-use airborne LiDAR data filtering method based on cloth simulation. Remote Sensing, 8(6), 501.
Lasground:https://www.cs.unc.edu/~isenburg/lastools/download/lasground_README.txt
Lasclassify:https://www.cs.unc.edu/~isenburg/lastools/download/lasclassify_README.txt
林耿帆, 徐百輝 (2012). 以物件為基礎之光達點雲分類。
侯進雄, 費立沅, 邱禎龍, 陳宏仁, 謝有忠, 胡植慶, & 林慶偉 (2014) 空載光達數值地形產製與地質災害的應用 航測及遙測學刊, 18(2), 93-108。
陳威廷 (2019) 結合光達相機與雷達之追蹤演算法發展及其於自駕車之應用。
莊宗易 (2020) 應用三維深度學習於光達點雲資料之語義分類。
黃立信, 張嘉倫, 邱建華, & 王建文 (2019) 地面光達點雲資料處理最佳化之研究 測量工程, 58, 52-64。