簡易檢索 / 詳目顯示

研究生: 張嘉芳
Chang, Jia-Fang
論文名稱: MTN型金屬有機骨架由非序化中間體轉變為結晶態的快速途徑研究
Expressway of MTN-type metal-organic framework crystallization via amorphous intermediate
指導教授: 林嘉和
Lin, Chia-Her
口試委員: 李位仁
Lee, Way-Zen
葉旻鑫
Yeh, Min-Hsin
林嘉和
Lin, Chia-Her
口試日期: 2022/01/18
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 130
中文關鍵詞: 金屬有機骨架材料溶劑置換加熱抽真空快速結晶化
英文關鍵詞: Metal-Organic Frameworks, solvent exchange, heat under vacuum, rapid crystallization
DOI URL: http://doi.org/10.6345/NTNU202200155
論文種類: 學術論文
相關次數: 點閱:393下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬有機骨架(Metal-Organic Frameworks, MOFs)為具有結晶性與有序多孔性的材料,其結晶關鍵步驟是從溶液中形成的,儘管此步驟很重要,但 MOF 結晶的途徑一般是通過加熱混合溶液、冷卻它們然後繼續所謂的活化過程而發生,並且MOF的結晶最終狀態會影響其應用性能表現。本研究透過雙溶劑置換(two solvent exchange, TOSE)-加熱抽真空(heat under vacuum, HEVA)的方式快速驅動非序化團簇(amorphous clusters)轉變為結晶(crystalline) MOF,並延伸此一新發現,可將反應時間大幅縮短到2~4小時。
      研究分成三個部分,在第一部分中,探討PCN-333及MIL-101兩種皆是MTN型沸石拓譜結構的MOF,在加熱反應後經由雙溶劑置換(TOSE)-加熱抽真空(HEVA)的方式誘導MOF之快速結晶化,並且透過結果展現出與原始文獻合成方式得到相似或更高的比表面積。
    第二部分中,研究PCN-333及MIL-101兩個MOF在較短時間反應的最佳條件。在PCN-333系統中之MOF PCN-333-4h-HEVA具有最高比表面積4,463 m2/g,孔徑分布為39.5及48.1 Å;在MIL-101系統中MOF MIL-101(10HF)-11.1h-HEVA之具最高比表面積2,739 m2/g,孔徑分布21.3及27.4 Å。
      第三部分中,利用粉末X光繞射儀和場發射式電子顯微鏡來觀察MOF在反應結束後溶劑清洗過程中的晶體形貌轉變,且比表面積達MOF的最佳條件。

    The crystallization of Metal-Organic Frameworks (MOFs) from a solution is the key step to form ordering and crystalline MOF structures with porous characters. Despite their importance, the pathways through which MOFs crystallize spontaneously happen without a doubt by heating the mixture solutions, cooling them down and then continuing with so-called activation processes. And the final state of MOF crystallization will affect the performance of the applications. In this study, using a combination two solvents exchange (TOSE) and heat under vacuum (HEVA), we show that amorphous clusters rapidly transform to crystalline MOFs. And to extend this discovery, the reaction time was drastically shortened to 2 to 4 hours.
    The research is divided into three parts. In the first part, the two MOFs of PCN-333 and MIL-101, both belonging to Zeolite Socony Mobil Thirty-Nine (MTN) structural types are discussed. After the heating reaction, the MOF is subjected to TOSE-HEVA. The processes raise the rapid crystallization process of MOF, and the results show that the Brunauer–Emmett–Teller (BET) specific surface area is similar or better than the original literature synthesis method.
    In the second part, the best conditions for the two MOFs of PCN-333 and MIL-101 were obtained by studying the optimization of the reaction time. The MOF PCN-333-4h-HEVA in the PCN-333 system has the highest BET specific surface area of 4,453 m2/g, with pore sizes 39.5 and 48.1 Å; the MOF MIL-101(10HF)-11.1h-HEVA in the MIL-101 system has the highest BET specific surface area of 2,739 m2/g, with pore sizes 21.3 and 27.4 Å.
    In the third part, we use powder X-ray diffraction (PXRD) and field emission electron microscopy (FE-SEM) to observe the crystal morphology transformation of MOF during solvent cleaning after the reaction, and when the BET specific surface area reaches the best condition.

    謝辭 i 中文摘要 ii Abstract iii 目次 iv 表次 vii 圖次 ix 第一章 緒論 1 1-1 前言 1 1-2 多孔材料前瞻研究 3 1-3 MOF中缺陷、無序和靈活性之間的相互作用 5 1-4 主題背景: MOF結晶形成 8 1-5 研究動機 10 第二章 實驗與儀器 14 2-1 實驗藥品 14 2-2 儀器機型和測量簡介 18 2-3 實驗合成方法 23 第三章 具有MTN拓譜構型的鉻、鋁配位聚合物的合成過程與探討 24 3-1 MTN-type MOF 簡介 25 3-1-1 PCN-333 25 3-1-2 MIL-101 27 3-2 第一部分 非序化中間體之快速結晶合成探討 30 3-2-1 PCN-333快速結晶實驗合成討論 34 3-2-2 MIL-101快速結晶實驗合成討論 37 3-2-3結果與討論 40 3-2-4第一部分總結 58 3-3 第二部分PCN-333和MIL-101之快速結晶合成探討 59 3-3-1 PCN-333合成討論 59 時間 62 3-3-2 MIL-101合成討論 63 3-3-3結果與討論 67 3-3-4第二部分總結 93 3-4第三部分PCN-333和MIL-101之快速合成加熱溶劑影響MOFs的規律性 94 3-4-1快速成合後-溶劑加熱清洗實驗方法 94 3-4-2結果與討論 96 3-4-3第三部分總結 101 第四章 結論與展望 102 參考文獻 106 附錄A 111 A-1單塊材料製備方法 112 A-1-1 MIL-101和PCN-333單塊材料製備方法 113 A-2結果與討論 115 附錄B 120 B-1 MIL-101等異結構 121 B-1-1 MIL-101-BDC合成 122 B-1-2 MIL-101-SDC合成 122 B-1-3 MIL-101-FBC合成 123 B-2結果與討論 124 附錄C 129 Q&A 129

    1. Kitagawa, S.; Kitaura, R.; Noro, S.-i., Functional Porous Coordination Polymers. Angewandte Chemie International Edition 2004, 43 (18), 2334-2375.
    2. Pan, L.; Adams, K. M.; Hernandez, H. E.; Wang, X.; Zheng, C.; Hattori, Y.; Kaneko, K., Porous Lanthanide-Organic Frameworks:  Synthesis, Characterization, and Unprecedented Gas Adsorption Properties. Journal of the American Chemical Society 2003, 125 (10), 3062-3067.
    3. Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. Ö.; Snurr, R. Q.; O’Keeffe, M.; Kim, J.; Yaghi, O. M., Ultrahigh Porosity in Metal-Organic Frameworks. Science 2010, 329 (5990), 424-428.
    4. Wang, T. C.; Bury, W.; Gómez-Gualdrón, D. A.; Vermeulen, N. A.; Mondloch, J. E.; Deria, P.; Zhang, K.; Moghadam, P. Z.; Sarjeant, A. A.; Snurr, R. Q.; Stoddart, J. F.; Hupp, J. T.; Farha, O. K., Ultrahigh Surface Area Zirconium MOFs and Insights into the Applicability of the BET Theory. Journal of the American Chemical Society 2015, 137 (10), 3585-3591.
    5. Wang, J.; Zhang, Y.; Zhang, P.; Hu, J.; Lin, R.-B.; Deng, Q.; Zeng, Z.; Xing, H.; Deng, S.; Chen, B., Optimizing Pore Space for Flexible-Robust Metal–Organic Framework to Boost Trace Acetylene Removal. Journal of the American Chemical Society 2020, 142 (21), 9744-9751.
    6. Mon, M.; Bruno, R.; Tiburcio, E.; Viciano-Chumillas, M.; Kalinke, L. H. G.; Ferrando-Soria, J.; Armentano, D.; Pardo, E., Multivariate Metal–Organic Frameworks for the Simultaneous Capture of Organic and Inorganic Contaminants from Water. Journal of the American Chemical Society 2019, 141 (34), 13601-13609.
    7. Garibay, S. J.; Wang, Z.; Cohen, S. M., Evaluation of Heterogeneous Metal−Organic Framework Organocatalysts Prepared by Postsynthetic Modification. Inorganic Chemistry 2010, 49 (17), 8086-8091.
    8. Nguyen, J. G.; Cohen, S. M., Moisture-Resistant and Superhydrophobic Metal−Organic Frameworks Obtained via Postsynthetic Modification. Journal of the American Chemical Society 2010, 132 (13), 4560-4561.
    9. Kökçam-Demir, Ü.; Goldman, A.; Esrafili, L.; Gharib, M.; Morsali, A.; Weingart, O.; Janiak, C., Coordinatively unsaturated metal sites (open metal sites) in metal–organic frameworks: design and applications. Chemical Society Reviews 2020, 49 (9), 2751-2798.
    10. Erucar, I.; Keskin, S., Computational investigation of metal organic frameworks for storage and delivery of anticancer drugs. Journal of Materials Chemistry B 2017, 5 (35), 7342-7351.
    11. Dincă, M.; Long, J. R., Hydrogen Storage in Microporous Metal–Organic Frameworks with Exposed Metal Sites. Angewandte Chemie International Edition 2008, 47 (36), 6766-6779.
    12. Trickett, C. A.; Helal, A.; Al-Maythalony, B. A.; Yamani, Z. H.; Cordova, K. E.; Yaghi, O. M., The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nature Reviews Materials 2017, 2 (8), 17045.
    13. Hiraide, S.; Sakanaka, Y.; Kajiro, H.; Kawaguchi, S.; Miyahara, M. T.; Tanaka, H., High-throughput gas separation by flexible metal–organic frameworks with fast gating and thermal management capabilities. Nature Communications 2020, 11 (1), 3867.
    14. Pramanik, S.; Zheng, C.; Zhang, X.; Emge, T. J.; Li, J., New Microporous Metal−Organic Framework Demonstrating Unique Selectivity for Detection of High Explosives and Aromatic Compounds. Journal of the American Chemical Society 2011, 133 (12), 4153-4155.
    15. Taher, A.; Kim, D. W.; Lee, I.-M., Highly efficient metal organic framework (MOF)-based copper catalysts for the base-free aerobic oxidation of various alcohols. RSC Advances 2017, 7 (29), 17806-17812.
    16. Horike, S.; Shimomura, S.; Kitagawa, S., Soft porous crystals. Nature Chemistry 2009, 1 (9), 695-704.
    17. Zhang, S.-Y.; Jensen, S.; Tan, K.; Wojtas, L.; Roveto, M.; Cure, J.; Thonhauser, T.; Chabal, Y. J.; Zaworotko, M. J., Modulation of Water Vapor Sorption by a Fourth-Generation Metal–Organic Material with a Rigid Framework and Self-Switching Pores. Journal of the American Chemical Society 2018, 140 (39), 12545-12552.
    18. Kitagawa, S., Future Porous Materials. Accounts of Chemical Research 2017, 50 (3), 514-516.
    19. Fang, Z.; Bueken, B.; De Vos, D. E.; Fischer, R. A., Defect-Engineered Metal–Organic Frameworks. Angewandte Chemie International Edition 2015, 54 (25), 7234-7254.
    20. Dissegna, S.; Epp, K.; Heinz, W. R.; Kieslich, G.; Fischer, R. A., Defective Metal-Organic Frameworks. Advanced Materials 2018, 30 (37), 1704501.
    21. Bennett, T. D.; Cheetham, A. K.; Fuchs, A. H.; Coudert, F.-X., Interplay between defects, disorder and flexibility in metal-organic frameworks. Nature Chemistry 2017, 9 (1), 11-16.
    22. Loiseau, T.; Serre, C.; Huguenard, C.; Fink, G.; Taulelle, F.; Henry, M.; Bataille, T.; Férey, G., A Rationale for the Large Breathing of the Porous Aluminum Terephthalate (MIL-53) Upon Hydration. Chemistry – A European Journal 2004, 10 (6), 1373-1382.
    23. Vermoortele, F.; Bueken, B.; Le Bars, G.; Van de Voorde, B.; Vandichel, M.; Houthoofd, K.; Vimont, A.; Daturi, M.; Waroquier, M.; Van Speybroeck, V.; Kirschhock, C.; De Vos, D. E., Synthesis Modulation as a Tool To Increase the Catalytic Activity of Metal–Organic Frameworks: The Unique Case of UiO-66(Zr). Journal of the American Chemical Society 2013, 135 (31), 11465-11468.
    24. Bennett, T. D.; Yue, Y.; Li, P.; Qiao, A.; Tao, H.; Greaves, N. G.; Richards, T.; Lampronti, G. I.; Redfern, S. A. T.; Blanc, F.; Farha, O. K.; Hupp, J. T.; Cheetham, A. K.; Keen, D. A., Melt-Quenched Glasses of Metal–Organic Frameworks. Journal of the American Chemical Society 2016, 138 (10), 3484-3492.
    25. Yaghi, O. M.; Li, G.; Li, H., Selective binding and removal of guests in a microporous metal–organic framework. Nature 1995, 378 (6558), 703-706.
    26. McKinstry, C.; Cussen, E. J.; Fletcher, A. J.; Patwardhan, S. V.; Sefcik, J., Effect of Synthesis Conditions on Formation Pathways of Metal Organic Framework (MOF-5) Crystals. Crystal Growth & Design 2013, 13 (12), 5481-5486.
    27. Liu, X.; Chee, S. W.; Raj, S.; Sawczyk, M.; Král, P.; Mirsaidov, U., Three-step nucleation of metal–organic framework nanocrystals. Proceedings of the National Academy of Sciences 2021, 118 (10), e2008880118.
    28. Lo, S.-H.; Feng, L.; Tan, K.; Huang, Z.; Yuan, S.; Wang, K.-Y.; Li, B.-H.; Liu, W.-L.; Day, G. S.; Tao, S.; Yang, C.-C.; Luo, T.-T.; Lin, C.-H.; Wang, S.-L.; Billinge, S. J. L.; Lu, K.-L.; Chabal, Y. J.; Zou, X.; Zhou, H.-C., Rapid desolvation-triggered domino lattice rearrangement in a metal–organic framework. Nature Chemistry 2020, 12 (1), 90-97.
    29. 劉湋鈴. 溶劑脫附誘導鋁金屬有機骨架之快速結晶合成研究. 國立臺灣師範大學, 台北市, 2021.
    30. Ma, J.; Kalenak, A. P.; Wong-Foy, A. G.; Matzger, A. J., Rapid Guest Exchange and Ultra-Low Surface Tension Solvents Optimize Metal–Organic Framework Activation. Angewandte Chemie International Edition 2017, 56 (46), 14618-14621.
    31. Seetharaj, R.; Vandana, P. V.; Arya, P.; Mathew, S., Dependence of solvents, pH, molar ratio and temperature in tuning metal organic framework architecture. Arabian Journal of Chemistry 2019, 12 (3), 295-315.
    32. Fang, Q.; Zhu, G.; Xue, M.; Sun, J.; Wei, Y.; Qiu, S.; Xu, R., A Metal–Organic Framework with the Zeolite MTN Topology Containing Large Cages of Volume 2.5 nm3 Angewandte Chemie International Edition 2005, 44 (25), 3845-3848.
    33. Feng, L.; Wang, K.-Y.; Lv, X.-L.; Yan, T.-H.; Zhou, H.-C., Hierarchically porous metal–organic frameworks: synthetic strategies and applications. National Science Review 2020, 7 (11), 1743-1758.
    34. Feng, D.; Liu, T.-F.; Su, J.; Bosch, M.; Wei, Z.; Wan, W.; Yuan, D.; Chen, Y.-P.; Wang, X.; Wang, K.; Lian, X.; Gu, Z.-Y.; Park, J.; Zou, X.; Zhou, H.-C., Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation. Nature Communications 2015, 6 (1), 5979.
    35. Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I., A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science 2005, 309 (5743), 2040-2042.
    36. Zhang, X.-t.; Li, F.-q.; Ren, J.-x.; Guan, Z.-z.; Zhang, L.-j.; Feng, H.-j.; Hou, X.; Ma, C., Preparation and CO2 breakthrough adsorption of MIL-101(Cr)-D composites. Journal of Nanoparticle Research 2019, 21 (5), 105.
    37. Venna, S. R.; Jasinski, J. B.; Carreon, M. A., Structural Evolution of Zeolitic Imidazolate Framework-8. Journal of the American Chemical Society 2010, 132 (51), 18030-18033.
    38. Huang, C.; Dong, J.; Sun, W.; Xue, Z.; Ma, J.; Zheng, L.; Liu, C.; Li, X.; Zhou, K.; Qiao, X.; Song, Q.; Ma, W.; Zhang, L.; Lin, Z.; Wang, T., Coordination mode engineering in stacked-nanosheet metal–organic frameworks to enhance catalytic reactivity and structural robustness. Nature Communications 2019, 10 (1), 2779.
    39. Tian, T.; Zeng, Z.; Vulpe, D.; Casco, M. E.; Divitini, G.; Midgley, P. A.; Silvestre-Albero, J.; Tan, J.-C.; Moghadam, P. Z.; Fairen-Jimenez, D., A sol–gel monolithic metal–organic framework with enhanced methane uptake. Nature Materials 2018, 17 (2), 174-179.
    40. Yoo, D. K.; Woo, H. C.; Jhung, S. H., Removal of particulate matter with metal–organic framework-incorporated materials. Coordination Chemistry Reviews 2020, 422, 213477.
    41. Khutia, A.; Rammelberg, H. U.; Schmidt, T.; Henninger, S.; Janiak, C., Water Sorption Cycle Measurements on Functionalized MIL-101Cr for Heat Transformation Application. Chemistry of Materials 2013, 25 (5), 790-798.

    無法下載圖示 電子全文延後公開
    2027/02/03
    QR CODE