簡易檢索 / 詳目顯示

研究生: 周育瑋
Yu-Wei Chou
論文名稱: 聚合物修飾奈米金殼之表面電漿共振氣體感測陣列的最佳化研究
Optimization for Localized Surface Plasmon Resonance Vapor Sensor Array Using Polymer Coated Gold Nanoshells
指導教授: 呂家榮
Lu, Chia-Jung
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 67
中文關鍵詞: 局部表面電漿共振奈米粒子有機揮發性氣體感測器
英文關鍵詞: LSPR, nanoparticle, VOC sensor
論文種類: 學術論文
相關次數: 點閱:223下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究研發出一組局部表面電漿共振(localized surface plasmon resonance, LSPR)感測器陣列,藉由在奈米金殼粒子表面修飾具有不同官能基的聚合物來增強對於有機揮發性氣體(volatile organic compounds, VOCs)的化學選擇性。從即時光譜觀測LSPR變化的結果,可以得知經過表面修飾後的感測器對八種有機氣體均具有選擇性,此外仍能保有快速反應的特性,對不同氣體濃度進行偵測時也能獲得良好的線性關係。
    為找出具有最佳氣體鑑別度的感測器陣列組合,本研究使用五種計算方法進行判斷,分別為:最大距離法、變異數法、最大面積法、F檢定(F-test)、Wilcoxon-Wilcox檢定(Wilcoxon-Wilcox test)。其中,由變異數法指出使用DB-1、PIB、PECH三種感測器的組合鑑別度較佳,而最大距離法與最大面積法則是以PEG、PIB、PECH的感測器組合鑑別度較佳;F檢定得出具有較佳鑑別度的組合分別為{PEG, PIB}、{PEG, PECH}、{PMMA, PECH}這三種,至於Wilcoxon-Wilcox檢定則為PEG、PIB與PEG、PECH這二種組合。經由上述判斷的過程,有助於從大量的感測數據中快速篩選出具有最佳鑑別度的感測器組合。

    This research uses gold nanoshells as the localized surface plasmon resonance (LSPR) sensors that were surface-modified with various polymer thin films to provide chemical selectivity for detecting volatile organic compounds (VOCs). The changes of LSPR spectrum were measured by real-time UV-visible spectrum. Distinguishable patterns of the tested organic vapors with different functional groups were generated by one unmodified and seven surface-modified gold nanoshell LSPR sensors. The polymer modification altered the surface chemical affinity without increasing the response time.
    In order to find out the sensor set which would obtain the best recognition rate, five analytical methods were introduced: maximum distance, sum of variance, maximum area, F-test, and Wilcoxon-Wilcox test. The sum of variance method indicated that the {DB-1, PIB, PECH} sensor set had a better result, whereas the maximum distance and maximum area method showed the higher efficiency of the {PEG, PIB, PECH} sensor set. The result of F-test represented that {PEG, PIB}, {PEG, PECH}, and {PMMA, PECH} would be the possible sets, while Wilcoxon-Wilcox test indicated that {PEG, PIB} and {PEG, PECH} were the sets with significant differences. According to these analytical methods, the sensor set with obvious patterns would be easy to figure out from large amounts of sensing data without time-consuming.

    中文摘要.....................................................................................................i 英文摘要....................................................................................................ii 目錄...........................................................................................................iii 圖目錄.......................................................................................................vi 表目錄.....................................................................................................viii 第一章 研究背景與原理..........................................................................1 1-1 研究背景.....................................................................................1 1-2 奈米材料的定義與特性.............................................................4 1-3 奈米金屬粒子理論...................................................................10 1-3-1 奈米金屬粒子................................................................10 1-3-2 局部表面電漿共振........................................................12 1-4 F檢定 (F-test)..........................................................................13 第二章 實驗部份....................................................................................18 2-1 藥品與儀器設備.......................................................................18 2-1-1 實驗藥品與耗材............................................................18 2-1-2 儀器設備........................................................................20 2-2 實驗步驟...................................................................................22 2-2-1 奈米金屬粒子合成........................................................22 2-2-2 自組裝與聚合物表面修飾之流程................................23 2-2-3 感測系統架設................................................................26 2-2-4 合成與表面修飾流程圖................................................28 2-2-5 光譜數據處理................................................................31 2-3 有機揮發氣體偵測流程...........................................................34 2-4 感測器鑑別度之判斷方法.......................................................36 2-4-1 最大距離法....................................................................36 2-4-2 變異數法........................................................................37 2-4-3 最大面積法....................................................................38 2-4-4 F檢定 (F-test)...............................................................39 2-4-5 Wilcoxon-Wilcox檢定 (Wilcoxon-Wilcox test)..........39 第三章 結果與討論................................................................................40 3-1 奈米金屬粒子之合成、自組裝與表面修飾...........................40 3-1-1 奈米金屬粒子合成........................................................40 3-1-2 自組裝與聚合物表面修飾............................................43 3-2 有機揮發氣體偵測...................................................................47 3-3 不同聚合物修飾之感測器鑑別度判斷方法探討...................52 3-3-1 最大距離法....................................................................52 3-3-2 變異數法........................................................................54 3-3-3 最大面積法....................................................................56 3-3-4 F檢定 (F-test)...............................................................58 3-3-5 Wilcoxon-Wilcox檢定 (Wilcoxon-Wilcox test)..........59 第四章 結論............................................................................................61 參考文獻..................................................................................................63 附錄..........................................................................................................65

    1. Pejcic, B.; Eadington, P.; Ross, A. Environ. Sci. Technol. 2007, 41, 6333-6342.
    2. Singh, S. J. Hazard. Mater. 2007, 144, 15-28.
    3. Barsan, N.; Koziej, D.; Weimar, U. Sens. Actuators B 2007, 121, 18-35.
    4. Wohltjen, H. Sens. Actuators 1984, 5, 307-325.
    5. Patrash, S. J.; Zellers, E. T. Anal. Chem. 1993, 65, 2055-2066.
    6. Wohltjen, H.; Snow, A. W. Anal. Chem. 1998, 70, 2856-2859.
    7. Yang, C.-Y.; Li, C.-L.; Lu, C.-J. Anal. Chim. Acta. 2006, 565, 17-26.
    8. Steinecker, W. H.; Rowe, M. P.; Zellers, E. T. Anal. Chem. 2007, 79, 4977-4986.
    9. Kretschmann, E. Opt. Commun. 1972, 5, 331-336.
    10. Kretschmann, E. Opt. Commun. 1978, 26, 41-44.
    11. Weikel, A. L.; Conklin, S. D.; Richardson, J. N. Sens. Actuators B 2005, 110, 112-119.
    12. Whelan, R. J.; Zare, R. N. Anal. Chem. 2003, 75, 1542-1547.
    13. Liedberg, B.; Nylander, C.; Lundstrom, I. Sen. Actuators 1983, 4, 299-304.
    14. Link, S.; EI-Sayed, M. A. Annu. Rev. Phys. Chem. 2003, 54, 331-366.
    15. Reyes, L. F.; Hoel, A.; Saukko, S.; Heszler, P.; Lantto, V.; Granqvist, C. G. Sens. Actuators B 2006, 117, 128-134.
    16. Nath, N.; Chilkoti, A. Anal. Chem. 2002, 74, 504-509.
    17. Cheng, C.-S.; Chen, Y.-Q.; Lu, C.-J. Talanta 2007, 73, 358-365.
    18. Zhang, H-L; Evans, S. D.; Henderson, J. R.; Miles, R. E.; Shen, T-H Nanotechnol. 2002, 13, 439-444.
    19. 馬遠榮,奈米科技,商周出版,2002.
    20. 尹邦躍,奈米時代,五南圖書,2002.
    21. 奈米科學與技術導論,競逐原子世界—奈米技術與產業發展系列,第一輯,經濟部工業局,2002.
    22. 何鎮揚;陳雅玲;廖家榮,奈米科技交響曲—化學篇,奈米科技K-12教育發展系列叢書,國立臺灣大學出版中心,2004.
    23. Willets, K. A.; Van Duyne, R. P. Annu. Rev. Phys. Chem. 2007, 58, 267-297.
    24. 陳可杰;黃聯海;李宗倚;李婉怡;陳益昌合譯,統計學,滄海圖書,2006.
    25. 黃俊英,多變量分析,中國經濟企業研究所,2000.
    26. 林師模;陳苑欽,多變量分析:管理上的應用,雙葉書廊,2003.
    27. Kahan, W., work in progress, http://www.cs.berkeley.edu/~wkahan/Triangle.pdf, 2000, 1-22.
    28. Kanji, G. K.著;陳明終;鍾才元譯,100種統計檢定,心理出版,2006.
    29. Sun, Y.; Mayers, B. T.; Xia, Y. Nano Lett. 2002, 2, 481-485.
    30. Liu, S. T.; Zhu, T.; Hu, R. S.; Liu, Z. F. Phys. Chem. Chem. Phys. 2002, 4, 6059-6062.

    下載圖示
    QR CODE