簡易檢索 / 詳目顯示

研究生: 陳偉昌
論文名稱: 利用原子力顯微鏡探討細菌細胞壁結構的破壞
指導教授: 賈至達
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 58
中文關鍵詞: 大腸桿菌原子力顯微鏡力與距離曲線有效彈性常數楊氏模數紫外光脂多醣層肽聚醣層細胞壁表面增強拉曼光譜
論文種類: 學術論文
相關次數: 點閱:117下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大腸桿菌受到紫外光照射後,菌體形貌會產生變化,且隨著照射強度增加,菌體形貌的變化也會增加,利用原子力顯微鏡在生物樣品量測的優勢,來了解為什麼菌體會有如此變化。細胞壁是主要維持細胞形貌的因素,而組成細胞壁的結構分別是肽聚醣層與脂多醣層,所以探究肽聚醣層與脂多醣層是否遭受紫外光照射而破壞,是本研究的重點。
    本研究利用原子力顯微鏡,在大氣環境下測得,大腸桿菌產生的吸附力做功會隨著照射紫外光的能量提升而下降,這表示維持吸附力的脂多醣層的確受到紫外光照射而破壞 在液態環境下測得,大腸桿菌的有效彈性常數與楊氏模數經由紫外光照射後會下降,利用楊氏模數下降這可以證明紫外光照射,也會產生肽聚醣的破壞。
    使用恆定力輕敲式掃描模式系統進行實驗,利用其在液態環境優異的解析度,讓我們在液態環境更精準的量測,實驗結果,其吸附力與楊氏模數的下降,與傳統原子力顯微鏡的結果相同。
    使用表面增強拉曼光譜進行實驗,可以發現受紫外光照射的大腸桿菌有許多來自於DNA的訊號,未照射紫外光的大腸桿菌則沒有DNA的訊號,這表示,細胞壁的確受到了損害。

    關鍵字:大腸桿菌、原子力顯微鏡、力與距離曲線、有效彈性常數、楊氏模數、紫外光、脂多醣層、肽聚醣層、細胞壁、表面增強拉曼光譜

    Chapter1 緒論 1 Chapter2 樣品製備 2 2.1 微生物 2 2.1.1 微生物的定義與分類 2 2.1.2 大腸桿菌 3 2.1.3 細胞壁 3 2.1.4 生長曲線 4 2.1.5 紫外光殺菌 6 2.2 大腸桿菌的製備 6 2.2.1 Luria-Bertani (LB)與青黴素的製備 6 2.2.2 大腸桿菌的培養 7 2.3 基板的製作 8 2.4 紫外光照射與樣品的製作 8 Chapter3 原子力顯微 9 3.1 原子力顯微鏡基本原理與操作模式 9 3.2 力與距離的曲線 11 3.2.1 有效彈性常數的計算 15 3.2.2 楊氏模數的計算 17 3.2.3 吸附力所作的功 17 3.3 靜電力顯微鏡 18 3.4 原子力顯微鏡在生物方面的應用 19 3.5 實驗操作過程 20 3.5.1 原子力顯微鏡操作過程 20 3.5.2 利用原子力顯微鏡取得力與距離的曲線 . 24 3.5.3 靜電力顯微鏡 25 3.6 靜電力顯微鏡實驗結果 26 3.7 吸附力作功實驗結果 29 3.7.1 毛細現象 29 3.7.2 水接觸角的量測與驗證 30 3.8 大氣環境中的有效彈性常數 32 3.9 液態環境中的有效彈性常數與楊氏模數 34 Chapter4 恆定力輕敲式掃描模式 37 4.1 基本原理 37 4.2 實驗操作過程 40 4.3 楊氏模數變化 44 4.4 吸附力變化 45 4.5 與傳統原子力顯微鏡比較 46 Chapter5 表面增強拉曼 48 5.1 拉曼光譜 48 5.2 表面增強拉曼光譜 48 5.3 樣品製作 49 5.4 實驗操作過程 50 5.5 實驗結果與分析 51 Chapter6 結論與未來展望 54 參考資料 55

    [1] K T Tsen, Shaw-Wei D Tsen, Otto F Sankey , Juliann G Kiang, Selective inactivation of micro-organisms with near infrared femtosecond laser pulses. Journal of Physics: Condensed Matter, 2007, 19, 472201.
    [2] K.T. Tsen, Shaw-Wei D. Tsen, Chih-Long Chang, Chien-Fu Hung, T.-C. Wu, B. Ramakrishna, K Mossman, Juliann G. Kiang, Inactivation of viruses with a femtosecond laser via impulsive stimulated Raman scattering, Proceedings of
    SPIE, 2008, 6854.
    [3] 楊黃捷,2010,利用原子力顯微鏡研究紫外光殺菌之衰亡機制,國立台灣師
    範大學物理研究所碩士論文
    [4] 蔡文城,2002,微生物學,台北:藝軒圖書出版社
    [5] 陳頤之等著,2004,微生物學,台北:華騰文化股份有限公司
    [6] 李銘亮,2002,微生物生理學,台北:藝軒圖書出版社
    [7] 沈萍等著,2003,微生物學,台北:五南圖書出版股份有限公司
    [8] 柯勇,2003,現代微生物學,台北:藝軒圖書出版社
    [9] 吳俊興等譯,Pollack 等著,2005,微生物學實驗,台北:高立圖書有限公司
    [10] 王三郎,2005,應用微生物學,台北:高立圖書有限公司
    [11] 許靜淑,2009,利用掃描探針顯微鏡探測鈷、鎳及鈷鎳複合奈米粒子,國立
    台灣師範大學物理研究所碩士論文
    [12] 邱千鳳,2007,利用掃描探針顯微鏡探測二氧化鈦奈米粒子,國立台灣師範
    大學物理研究所碩士論文
    [13] C.J. Sullivan, S. Venkataraman, S.T. Retterer, D.P. Allison, M.J. Doktycz, Comparison of the indentation and elasticity of E. coli and its spheroplasts by AFM, Ultramicroscopy, 2007, 107, pp. 934-942.
    [14] A.V Bolshakov, O.I Kiselyova, A.S Filonov, O.Yu Frolova, Y.L Lyubchenko, I.V Yaminsky, Comparative studies of bacteria with an atomic force microscopy operating in different modes. Ultramicroscopy, 2001, 86, 1-2, pp. 121-128.
    [15] M.J. Doktycz, C.J. Sullivan, P.R. Hoyt, D.A. Pelletier, S. Wu, D.P. Allison, AFM imaging of bacteria in liquid media immobilized on gelatin coated mica surfaces,Ultramicroscopy, 2003, 97, 1-4, pp. 209-216.
    [16] C.J. Sullivan, J.L. Morrell, D.P. Allison, M.J. Doktycz, Mounting of Escherichia coli spheroplasts for AFM imaging. Ultramicroscopy, 2005, 105, 1-4, pp. 96-102.
    [17] M. Gad, A. Ikai, Method for immobilizing microbial cells on gel surface for dynamic AFM studies, Biophysical Journal, 1995, 69, 6, pp. 2226-2233. 56
    [18] V. Vadillo-Rodriguez, T.J. Beveridge, J.R. Dutcher, Surface viscoelasticity of individual Gram-negative bacterial cells measured using atomic force microscopy, Journal of Bacteriology, 2008, 190, 12, pp. 4225-4232.
    [19] 楊盛行等譯,Lansing M. Prescott, John P. Harley, and Donald A. Klein 著,2007,基礎微生物學,台北:藝軒圖書出版社
    [20] Rikke Louise Meyer, Xingfei Zhou, Lone Tang, Ayyoob Arpanaei, Peter Kingshott, Flemming Besenbache, Immobilisation of living bacteria for AFM imaging under physiological conditions. Ultramicroscopy, 2010, 110,11, pp.
    1349–1357.
    [21] 蔡毓楨等著,2007,原子力顯微鏡實作訓練教材,台北:五南圖書出版股份
    有限公司
    [22] Xu Li and Bruce E. Logan, Analysis of Bacterial Adhesion Using a Gradient Force Analysis Method and Colloid Probe Atomic Force Microscopy, Langmuir, 2004, 20, 20, pp.8817-8822.
    [23] Marco Salerno, Ivan Bykov, Tutorial: mapping adhesion forces and calculating elasticity in contact-mode AFM, Microscopy and Analysis, 2006, 20, 2, pp. S5-S8.
    [24] Stephanie B. Velegol and Bruce E. Logan, Contributions of Bacterial Surface
    Polymers, Electrostatics, and Cell Elasticity to the Shape of AFM Force Curves, Langmuir, 2002, 12, pp. 5256-5262
    [25] Markus Arnoldi, Monika Fritz, Edmund Ba¨uerlein, Manfred Radmacher, Erich Sackmann, Alexei Boulbitch, Bacterial turgor pressure can be measured by atomic force microscopy, Physical Review E, 2000, 62, 1.
    [26] Fabien Gaboriaud, Sidney Bailet, Etienne Dague, Frederic Jorand, Surface structure and nanomechanical properties of Shewanella putrefaciens bacteria at two pH values (4 and 10) determined by atomic force microscopy, Journal of Bacteriology, 2005, 187, 11, pp. 3864-3868.
    [27] Yea-Ling Ong, Anneta Razatos, George Georgiou, Mukul M. Sharm, Adhesion forces between E. coli bacteria and biomaterial surfaces, Langmuir, 1999, 15, 8, pp. 2719-2725.
    [28] Glenn A. Burks, Stephanie B. Velegol,EkaterinaParamonova,Benjamin E. Lindenmuth, Jason D.Feick, Bruce E. Logan, Macroscopic and nanoscale measurements of the adhesion of bacteria with varying outer layer surface composition. Langmuir, 2003, 19, 6, pp. 2366-2371.
    [29] Hans-Ju¨rgen Butt, Brunero Cappella, Michael Kappl, Force measurements with the atomic force microscope : Technique, interpretation and applications, Surface Science Reports, 2005, 59, pp. 1-152. 57
    [30] Xudong Xiao and Linmao Qian, Investigation of Humidity-Dependent Capillary Force, Langmuir 2000, 16, pp. 8153-8158
    [31] Arzu Atabek, Terri A. Camesano, Atomic force microscopy study of the effect of lipopolysaccharides and extracellular polymers on adhesion of Pseudomonas aeruginosa. Journal of Bacteriology, 2007, 189, 22, pp. 8503-8509.
    [32] J.Twardowski P.Anzenbacher Ellis Horwood ,Raman and IR spectroscopy in biology and biochemistry, 1994 , pp14-57.
    [33] Alan Campion and Patanjali Kambhampati, Surface-enhanced Raman scattering, Chemical Society Reviews, 1998, 27, pp. 241-250.
    [34] Biomedical Engineering Biomedical Photonics HANDBOOK Tuan Vo-Dinh SPIE 2003 64-1~64-39
    [35] Wen-Chi Lin, Lu-Shing Liao, Yi-Hui Chen, Hung-Chun Chang, Din Ping Tsai, Hai-Pang Chiang, Size Dependence of Nanoparticle-SERS Enhancement from Silver Film over Nanosphere (AgFON) Substrate, Plasmonics, 2011, 6, pp.201-206
    [36] Stephanie B. Velegol, Shaun Pardi, Xu Li, Darrell Velegol, Bruce E. Logan, AFM Imaging Artifacts due to Bacterial Cell Height and AFM Tip Geometry, Langmuir, 2003, 19, pp.851-857
    [37] The Architecture of the Murein (Peptidoglycan) in Gram-Negative Bacteria: Vertical Scaffold or Horizontal Layer(s)?, Waldemar Vollmer , Joachim-Volker Ho¨ltje, Journal of Bacteriology, 2004, 186, 18, pp.5978-5987
    [38] Nanomechanics of polymer gels and biological tissues: A critical review of analytical approaches in the Hertzian regime and beyond, David C. Lin, Ferenc Horkay, Soft Matter, 2008, 4, pp.669-682
    [39] N. Sneddon, The Relation Between Load And Penetration In The Axisymmetric Boussinesq Problem For A Punch Of Arbitrary Profile, J.Engng, 1965, 3, pp.47-57
    [40] Effect of Contact Deformations on the Adhesion of Particles, Derjaguin B.V., Muller V.M., Toropov Yu.P., Journal of Colloid, 1975, 53, 314
    [41] Yuanqing Chao, Tong Zhang, Surface-enhanced Raman scattering (SERS) revealing chemical variation during biofilm formation: from initial attachment to mature biofilm, Analytical and Bioanalytical Chemistry, 2012, 404, 5, pp.1465-1475
    [42] Roger M. Jarvis, Alan Brooker, Royston Goodacre, Surface-Enhanced Raman Spectroscopy for Bacterial Discrimination Utilizing a Scanning Electron Microscope with a Raman Spectroscopy Interface, American Chemical, 2004, 76,
    17, pp.5198-5202
    [43] Angela Walter, Anne Marz, Wilm Schumacher, Petra Rosch, Jurgen Popp, Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device, Lab on a Chip, 2011, 11, pp.1013-1021

    下載圖示
    QR CODE