簡易檢索 / 詳目顯示

研究生: 江宥莆
Chiang, You-Fu
論文名稱: 基於混和式視覺回授之自主式移動機器人位置控制
Hybrid-Vision-Based Feedback Control for Localization of an Autonomous Mobile Robot
指導教授: 陳俊達
Chen, Chun-Ta
口試委員: 陳俊達
Chen, Chun Ta
陳志鏗
Chen, Zhi Keng
林志哲
Lin, Zhi Zhe
口試日期: 2021/08/09
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 105
中文關鍵詞: 自主式移動機器人超寬頻室內定位位置控制基於位置之視覺伺服控制基於圖像之視覺伺服控制
英文關鍵詞: Autonomous mobile robot, Ultra-wireband, indoor positioning Position control, PBVS, IBVS
研究方法: 實驗設計法準實驗設計法主題分析比較研究
DOI URL: http://doi.org/10.6345/NTNU202101231
論文種類: 學術論文
相關次數: 點閱:160下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文「基於混和式視覺回授之自主式移動機器人位置控制」旨在開發可應用於溫室農業採收以及室內服務型之自主式輪型移動機器人。文中探討了移動機器人的設計、控制法和其位置控制之應用,其著重在使移動機器人具有自主移動功能並實現自動化、低成本以及精準定位之應用。為了開發自主式移動機器人,本論文結合了攝相機與移動機器人,並比較了基於影像視覺之不同控制法,分別為基於位置之視覺伺服控制(Position Based Visual Control, PBVS)、基於圖像之視覺伺服控制(Image Based Visual Control, IBVS)與本論文提出之混合式視覺回授控制(Hybrid Visual Servo Control, HVSC),最後也進行其相關應用之實驗與探討,包含目標追蹤之位置控制、控制法參數與移動機器人轉向實驗。實驗結果顯示本論文所開發的基於混合式視覺回授控制之自主式移動機器人能夠精準地完成室內位置控制效果。

    This thesis “Hybrid-Vision-Based Feedback Control for Localization of an Autonomous Mobile Robot” aims to develop an autonomous wheeled mobile robot that can be used in greenhouse agricultural harvesting and indoor service. This article introduces the design and control method of mobile robots and the application of its position control. It focuses on enabling mobile robot to have autonomous movement functions and realize the application of automation, low cost and precise positioning. In order to develop autonomous mobile robots, this paper combines cameras and mobile robots and we compare different visual servo control methods. Respectively, PBVS(Position Based Visual Servo)、IBVS(Image Based Visual Servo) and HVSC(Hybrid Visual Servo Control) which proposed in this paper. Finally, we presented related applications and experiments, including the position control of target tracking, discussion of control method parameters and turning experiment. The results show that the autonomous mobile robot based on hybrid visual feedback servo control developed in this paper can accurately complete the indoor position control effect.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.3 研究目的 15 1.4 論文架構與研究方法設計步驟 16 第二章 輪型差速移動機器人設計 17 2.1 輪型移動機器人硬體架構 17 2.2 攝相機硬體架構 25 2.3 室內定位技術 27 2.3.1 超寬頻UWB室內定位系統 28 第三章 非完整拘束輪型移動機器人 32 3.1 輪型機器人運動學模型 32 3.2 視覺伺服控制 37 3.3 基於位置之視覺伺服位置控制 38 3.3.1 PBVS位置-速度聯級控制 38 3.4 基於圖像之視覺伺服回授控制 44 3.4.1 基於IBVS之 模糊控制 46 3.5 混合式視覺伺服回授控制 52 第四章 自主式移動機器人之視覺伺服位置控制實驗 54 4.1 PBVS軌跡位置模擬分析 54 4.2 PBVS在自主式移動機器人之位置控制 58 4.2.1 PBVS控制參數探討 59 4.2.2 PBVS定位控制實驗 63 4.2.3 PBVS轉向實驗 69 4.3 PBVS 聯級控制之實驗結果與討論 75 4.4 IBVS模糊控制 77 4.5 混合式視覺回授控制 82 4.5.1 混合式視覺伺服回授應用於番茄採摘位置控制實驗一 83 4.5.2 混合式視覺回授控制應用於番茄採摘位置控制實驗二 88 4.5.3 混合式視覺回授控制應用於番茄採摘位置控制實驗三 93 4.5.4 混合式視覺回授控制應用於番茄採摘位置控制實驗四 98 第五章 結論與未來展望 102 參考文獻 103

    參考文獻
    [1] Fuhong Dong, Wolfgang Heinemann, Roland Kasper. “Development of a row guidance system for an autonomous robot for white asparagus harvesting”, Computers and Electronics in Agriculture, 79, 2011, 216-225
    [2] Seong Ik Han, “Prescribe consensus and formation error constrained finite-time sliding mode control for multi-agent mobile robot system”, IET Control Theory & Applications, 12.2:, 2018, 282-290.
    [3] Hyun jin Chang, Tae seok Jin, “Adaptive Tracking Controller Based on the PID for Mobile Robot Path Tracking”, ICIRA, Verlag Berlin Heidelberg, 2013, 540-549
    [4] Gonzalo Farias, Gonzalo Garcia, Guelis Montenegro, “Reinforcement Learning for Position Control Problem of a Mobile Robot”, IEEE Access, 8, 2020, 152941-152951
    [5] V. J. Gonzalez, R. Parkin, M. L. Para, J. M. Dorador, “A wheeled mobile robot with obstacle avoidance capability”, Mechanica Technologia, no.1, 2004, 150-159
    [6] Wang, Hesheng, “Adaptive vision-based leader–follower formation control of mobile robots” IEEE Transactions on Industrial Electronics, 64.4, 2016, 2893-2902
    [7] Ying Wang, “A modified image-based visual servo controller with hybrid camera configuration for robust robotic grasping”, Robotics and Autonomous Systems, 62, 2014, 1398-1407
    [8] Yin Yin Aye, Keigo Watanabe, “Imaged-based Fussy Parking Control”, Systems, control and iformation, 64.8, 296-303
    [9] Yong chun Fang, Xi Liu, Xuebo Zhang, “Adaptive active visual servoing of nonholonomic mobile robots”, IEEE Transactions on Industrial Electronics, 59.1, 2011, 486-497
    [10] Min-Fan Lee, Chiu, Fu Hsin, “A hybrid visual servo control system for the autonomous mobile robot”, IEEE/SICE International Symposium on System Integration, IEEE, 2013, 31-36.
    [11] Kai-Tai, et al, “Navigation control design of a mobile robot by integrating obstacle avoidance and LiDAR SLAM”, IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2018, 1833-1838.
    [12] Shin-Shin Chen, Fu-Lan Hsu, Yan-San Huang, “Frictional properties of wood flooring materials” Taiwan Journal of Forest Science, 20.2, 2005), 95-104.
    [13] Rivers Robert W, “Evidence in traffic crash investigation and reconstruction: identification, interpretation and analysis of evidence and the traffic crash investigation and reconstruction process”, Charles C Thomas Publisher, 2006
    [14] R. W. Brockett, “Asymptotic Stability and Feedback Stabilization”, Differential Geometric Control Theory, Birkhauser, Boston, 1983, 181-191
    [15] Campion Guy, Georges Bastin, Brigitte Dandrea-Novel. “Structural properties and classification of kinematic and dynamic models of wheeled mobile robots”, IEEE transactions on robotics and automation, 12.1, 1996, 47-62
    [16] M.Aicardi, G.Casalino, A.Bicchi, A.Balestrino, “Closed Loop Steering of Unicycle-like Vehicles via Lyapunov Techniques”, IEEE Robotics &Automation Magazine, 1995, 27-35
    [17] R. I. Hartley, A. Zisserman, “Multiple View Geometry in Computer Vision”, 2nd ed. London, U.K.: Cambridge Univ. Press, 2003.
    [18] E.H.Mamdani, S.Assilian, “An experiment in linguistic synthesis with a fuzzy logic controller”, International Journal of Man-Machine Studies Volume 7, Issue 1, January 1975, 1-13

    下載圖示
    QR CODE