簡易檢索 / 詳目顯示

研究生: 江慧玉
Chiang, Hui-Yu
論文名稱: 開發機器視覺結合紅綠藍三原色追跡技術在分析化學上的應用
Development and application of machine vision combined with RGB-tracking technology in analytical chemistry
指導教授: 林震煌
Lin, Cheng-Huang
口試委員: 林震煌
Lin, Cheng-Huang
何佳安
Ho, Ja-An
李慧玲
Lee, Hui-Ling
呂家榮
Lu, Chia-Jung
李君婷
Li, Chun-Ting
口試日期: 2024/06/05
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 131
中文關鍵詞: RGB(紅、綠、藍)追蹤檢測機器視覺靛藍還原染布HSV (色調、飽和度、亮度)色度主成分分析
英文關鍵詞: RGB-tracking, LabVIEW, Machine Vision, indigo, leuco-indigo, dyeing, HSV (Hue, Saturation, Value)
研究方法: 實驗設計法準實驗設計法觀察研究現象分析
DOI URL: http://doi.org/10.6345/NTNU202400640
論文種類: 學術論文
相關次數: 點閱:37下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究開發 UV/Vis的輔助方法,以數位相機取代傳統光學偵測器,配合LabVIEW內建機器視覺功能,依據紅綠藍三原色顏色變化的軌跡,作為檢測反應程度的依據。實驗中使用藍染溶液作為反應範例,即時監測顏色變化,並且對反應過程中物質的相對含量變化進行分析。為了還原靛藍,使用連二亞硫酸(Na2S2O4)進行化學還原,以及採用酵母粉(釀酒酵母)進行生物發酵過程。實驗結果顯示:靛藍溶液在化學還原法中可以透過 R 與 G 像素的曲線變化直接瞭解反應進程;G像素曲線開始增加表示產物靛白的形成,R曲線的急遽增加則顯示靛白量已超過靛藍,且反應逐漸達到平衡。在化學還原法中,由於Na2S2O4及其氧化產物皆為無色,因此溶液顏色直接由反應物靛藍與產物靛白的含量來決定。在生物發酵條件下觀察到較複雜的RGB追跡圖,從RGB曲線可觀察到反應初始的發酵活化期,且當R與G像素達到最大值時,表明在發酵作用下靛藍還原產生的靛白濃度最高,而後曲線變為平緩即反應已達到平衡。
    RGB-tracking檢測法也應用在追跡靛藍還原溶液具有染布效力的時間點。從RGB即時追跡圖譜及染布塊的HSV數值可確定染色的優化時間。兩種靛藍還原法的染液都是在G像素開始增加時即具有染布效力,且隨著反應時間,染布塊的飽和度逐漸增加。化學還原法的染液可提供更高的色調 (H) 與飽和度 (S),染色效能優於生物發酵法。
    本研究運用RGB色彩空間與CIE xyY色度圖解釋靛藍還原過程的顏色變化。追蹤的RGB曲線變化可反映出溶液組成成分的消長,CIE xyY色度圖則可更直觀表述溶液顏色的色相與飽和度的變化趨勢。由主成分分析統計可以發現:CIE xy色度數值對於靛藍反應的顏色變化較具指標性,且從各項主成分變異的特徵可對反應進行監控,或是進行實驗條件的優化與探討。
    這個RGB-tracking檢測法就像是微觀系統的放大鏡,例如常見的光敏電阻只能檢測光線的明亮度,而本研究開發的方法是以相機擷取溶液顏色,同步透過機器視覺程式,解讀即時的反應程度。靛藍還原反應不論是採用化學還原法,或是過程牽涉較多機制的生物發酵法,對於溶液顏色進行RGB三色的即時追跡,更能有效評估還原進行的程度,提高實驗的精確度。此方法具有即時且連續追跡的優點,且運用機器視覺編程具有彈性,可依需要進行客製化設計,未來將有可能取代UV/Vis光譜法,或做為UV/Vis光譜法的互補方式。

    A novel RGB-tracking technique using detecting the color of the reaction solution is described. Using indigo solution as a model reaction, this approach allows real-time monitoring and analysis of the relative changes in substance concentrations during the reaction process. The RGB-tracking system consists of a digital camera, light source, data acquisition equipment, LabVIEW program, and integrated machine vision functions. For the reduction of indigo, sodium dithionite ( Na2S2O4 ) is applied for chemical reduction, while yeast powder (brewer's yeast) is utilized for the biological fermentation process. Experimental results reveal that in the chemical reduction method, the progression of the indigo solution can be directly understood through the curves of the R and G pixels. The initial increase in the G pixel curve indicates the formation of the product, leuco-indigo, while a sharp rise in the R curve signifies that the amount of leuco-indigo has exceeded that of indigo, indicating a gradual approach to equilibrium in the reaction. In the chemical reduction method, as both Na2S2O4 and its oxidation products are colorless, the color of the reaction solution is directly determined by the content of the reactant indigo and the product leuco-indigo. Under the conditions of biological fermentation, more intricate RGB tracking patterns were observed. Since a blank fermentation solution serves as the background, the color changes during the fermentation process are also taken into consideration. The RGB curves reveal the initial fermentation activation state, and when both the R and G pixels reach their maximum values, it indicates the highest concentration of leuco-indigo resulting from indigo reduction through fermentation. Subsequently, the curves become smooth, signifying that the reaction has reached equilibrium.
    The RGB-tracking detection method is also applied to track the optimal moment when the indigo reduction solution becomes effective for dyeing fabric. By analyzing the real-time RGB curves and the HSV values of the dyed fabric samples, the ideal dyeing time can be determined. In both reduction methods for indigo dye, the dyeing effectiveness is evident as soon as the G pixel begins to increase, and with increasing reaction time, the fabric samples gradually achieve higher levels of saturation. The chemical reduced dyeing solution offers higher hue (H) and saturation (S), and demonstrates significantly better dyeing performance compared to the bio-fermentation method.
    This study utilizes the RGB color space and the CIE xyY chromaticity diagram to explain the color changes during the indigo reduction process. The tracked changes in the RGB curves reflect the variations in the composition of the solution, while the CIE xyY chromaticity diagram provides a more intuitive representation of the changes in hue and saturation of the solution's color. Principal Component Analysis (PCA) reveals that the CIE xy chromaticity values are more indicative of the color changes in the indigo reaction. Additionally, the characteristics of the variations in the principal components can be used to monitor the reaction and optimize experimental conditions.
    The RGB-tracking detection device acts like a magnifying glass for microsystems. For instance, common photosensitive resistors can only measure the brightness of light. In contrast, the approach developed in this study involves using a camera to capture color variations and simultaneously employs machine vision algorithms to interpret the immediate level of response. This is especially true for the process of indigo reaction, which involves multiple mechanisms. By instantly tracking the real-time changes in the RGB tri-color of the solution, it becomes even more effective in evaluating the extent of reduction processes, consequently elevating the precision of the experiments.
    This method offers the advantages of real-time and continuous tracking. Moreover, the utilization of machine vision programming provides flexibility, allowing for customized designs as required. In the future, there is potential for this method to replace UV/Vis spectroscopy or serve as a complementary approach to UV/Vis spectroscopy.

    第一章緒 論 研究目的 1 文獻方法與探討 4 靛藍藍染 6 傳統製藍與建藍 6 化學建藍 10 布料染色 10 第二章分析原理及方法 2-1 LabVIEW 13 2-2 機器視覺 16 2-3 數據擷取系統 18 2-4 RGB color space 20 2-5 色彩感知HSV 22 2-6 CIE 1931色彩空間 27 2-7 主成分分析 33 2-8 Image J 軟體 36 第三章儀器與實驗方法 3-1 自組裝RGB-tracking感測器 37 3-1-1 電路連接裝置 38 3-1-2 LabVIEW的機器視覺編程 42 3-2 實驗藥品與儀器 47 3-2-1 實驗藥品 47 3-2-2 實驗儀器與設備 48 3-3 實驗設計 49 3-4 實驗樣品製備與配製 50 3-4-1 合成靛藍的製備 50 3-4-2 化學還原法與生物發酵法 50 3-4-3 靛藍還原溶液的配製 52 3-4-4 實驗過程進行染布 52 3-4-5 染布塊的顏色分析 53 第四章研究結果與討論 4-1 合成靛藍的化學還原法 55 4-1-1 檢測方法的結果與比較 55 4-1-2 以拉曼光譜確認反應產物 60 4-2 合成靛藍的生物發酵法 62 4-2-1 檢測方法的結果與比較 62 4-2-2 生物發酵過程的pH值變化 67 4-3 RGB-model 轉換成CIExy色度圖 70 4-3-1 化學還原法 70 4-3-2 生物發酵法 75 4-4 RGB與CIE的主成分分析(PCA) 81 4-4-1 化學還原法 81 4-4-1.1 RGB數值的主成分分析 81 4-4-1.2 CIE xyY色度圖的主成分分析 84 4-4-2 生物發酵法 89 4-4-2.1 RGB數值的主成分分析 89 4-4-2.2 CIE xyY色度圖的主成分分析 95 4-5 UV/Vis 吸收光譜 98 4-5-1 化學還原法 98 4-5-2 生物發酵法 101 4-6 不同比例的Na2S2O4、酵母對反應的影響 104 4-6-1 化學還原法 104 4-6-2 生物發酵法 107 4-7 染布塊的圖像分析 109 4-7-1 兩種還原法的染布效力 109 4-7-2 染布塊的色調與飽和度 111 4-7-3 比較染布塊樣品的HSV 114 第五章結論 117 第六章參考文獻 121 附錄一 期刊論文 130 附錄二 研討會口頭發表 131

    Agudo, J. E.; Pardo, P. J.; Sánchez, H.; Pérez, Á. L.; Suero, M. I. A Low-Cost Real Color Picker Based on Arduino. Sensors 2014, 14,11943-11956.
    Yulkifli, Kahar, P.; Ramli, R.; Etika, S. B.; Imawan, C. Development of color detector using colorimetry system with photodiode sensor for food dye determination application. J Phys Conf Ser 2019, 1185(1):012031.
    Arrizabalaga, J. H.; Simmons, A. D.; Nollert, M. U. Fabrication of an Economical Arduino-Based Uniaxial Tensile Tester. J. Chem. Educ. 2017, 94(4), 530-533.
    Thompson, M. R.; Dessy, R. E. Use and abuse of digital signal processors. Anal. Chem. 1984, 56(3), 583–586.
    Rodolfa, K. T.; Bruckbauer, A.; Zhou, D.; Schevchuk, A. I.; Korchev, Y. E.; Klenerman, D. Nanoscale Pipetting for Controlled Chemistry in Small Arrayed Water Droplets Using a Double-Barrel Pipet. Nano Letters, 2006, 6(2), 252–257.
    Hoopmann, M. R.; Merrihew, G. E.; von Haller, P. D.; MacCoss, M. J. Post Analysis Data Acquisition for the Iterative MS/MS Sampling of Proteomics Mixtures. J. Proteome Res. 2009, 8(4), 1870–1875.
    Bellamy-Carter, J.; Oldham, N. J. PepFoot: A Software Package for Semiautomated Processing of Protein Footprinting Data. J. Proteome Res. 2019, 18(7), 2925–2930.
    Fatemah, A.; Rasool, S.; Habib, U. Interactive 3D Visualization of Chemical Structure Diagrams Embedded in Text to Aid Spatial Learning Process of Students. J. Chem. Educ. 2020, 97, 992-1000.
    Abraham, M.; Varghese, V.; Tang, H. Using Molecular Representations to Aid Student Understanding of Stereochemical Concepts. J. Chem. Educ. 2010, 87 (12), 1425−1429.
    Nowak, P. M.; Ko‘scielniak, P. What Color Is Your Method? Adaptation of the RGB Additive Color Model to Analytical Method Evalution. Anal. Chem. 2019, 91(16), 10343-10352.
    Nowak, P. M.; Leszczenko, P.; Zarusińska, J.; Ko‘scielniak, P. Acidity constant of pH indicators in the supramolecular systems studied by two CE-based methods compared using the RGB additive color model. Anal. Bioanal., 2020, 412, 577-588.
    Asheim, J.; Kvittingen, E. V.; Kvittingen, L.; Verley, R. A Simple, Small-Scale Lego Colorimeter with a Light-Emitting Diode (LED) Used as Detector. J. Chem. Educ. 2014, 91 (7), 1037-1039.
    Wei, B.; Wu, X.; Zhang, C.; Lv, Z. Analysis and improvement of non-contact SpO2 extraction using an RGB webcam. Biomed Opt Express. 2021, 12(8), 5227-5245.
    Negishi, T.; Abe, S.; Matsui, T.; Liu, H.; Kurosawa, M.; Kirimoto, T.; Sun, G. Contactless Vital Signs Measurement System Using RGB-Thermal Image Sensors and Its Clinical Screening Test on Patients with Seasonal Influenza. Sensors, 2020, 20(8), 2171.
    Hyeon-Woo, P.; Ji-Won, C.; Ji-Young, C.; Kyung-Kwang, J.; Na-Ri, K. Investigation of the Hue–Wavelength Response of a CMOS RGB-Based Image Sensor. Sensors, 2022, 22, 9497.
    Chen, Z.; Wang, X.; Liang, R. RGB-NIR multispectral camera. Optics Express, 2014, 22(5), 4985.
    Wang, Z.; Deligianni, F.; Voiculescu, I.; Yang, G.-Z. A Single RGB Camera Based Gait Analysis with A Mobile Tele-Robot For Healthcare. Annu Int Conf IEEE Eng Med Biol Soc. 2021, 11, 6933-6936.
    Fay, C. D. and Wu, L. Critical importance of RGB color space specificity for colorimetric bio / chemical sensing: A comprehensive study. Talanta, 2024, 266, 129457.
    Wang, Y. C.; Chang, H. T.; Yang, S. K.; Zhong, W. R.; Lin C. H.; Lee W. Z.; Toshio Kasai.; Chang, Y. F. Investigation of optimal conditions needed for the production of indigo and subsequent dyeing using CO2/O2 sensors and a cellphone camera. Anal. Sci., 2022, 38(4), 711-716.
    Gutiérrez-Bouzán, C.; Crespi, M.; Gibello, C. Determination of indigo in effluents from dyeing and washing baths. Melliand Text. Int. 1990, 71, 54–56.
    Lasopha, S.; Watanesk, R.; Dejmanee, S. Comparative study on traditional indigo dyeing onto cotton fabric using ripe banana and sodium dithionite as reducing agents. Asian J. Chem. 2015, 27(1), 28-32.
    Novotná, P.; Boon, J. J.; van der Horst, J.; Pacákovsá, V. Photodegradation of indigo in dichloro-methane solution. Color. Technol. 2003, 119, 121–157.
    Linhares, M.; Rebelo, S. L. H.; Simões, M. M. Q.; Silva, A. M. S.; Neves, M. G. P. M. S.; Cavaleiro, J. A. S.; Freire, C. Biomimetic oxidation of indole by Mn (III) porphyrins. Appl. Catal. A Gen. 2014, 470, 427–433.
    Buscio, V.; Crespi, M.; Gutiérrez-Bouzán, C. A Critical Comparison of Methods for the Analysis of Indigo in Dyeing Liquors and Effluents Materials 2014, 7, 6184-6193.
    Roessler A, Dossenbach O, Mayer U, Marte W, Rys P. Direct electrochemical reduction of indigo. Chimia 2001, 55(10), 879-882.
    Roessler, A.; Jin, X. State of the art technologies and new electrochemical methods for the reduction of vat dyes. Dyes Pigm. 2003, 59(3), 223-235.
    Roessler, A.; Crettenand, D. Direct electrochemical reduction of vat dyes in a fixed bed of graphite granules. Dyes Pigm. 2004, 63, 29-37.
    Vuorema, A.; John, P.; Keskitalo, M.; Anbu Kulandainathan, M.; Marken, F. Electrochemical and sonoelectrochemical monitoring of indigo reduction by glucose. Dyes Pigm., 2008, 76, 542-549.
    Roessler, A.; Crettenand, D.; Dossenbach, O.; Marte, W.; Rys, P. Direct electrochemical reduction of indigo. Electrochimica Acta, 2002, 47(12), 1989-1995.
    Wang, K. K.; Li, X. Y.; Yao, J. I. Indirect Electrochemical Reduction of Indigo with Metal complex system of Fe(Ⅱ)-DGS-Abal B. Earth Environ. Sci. 2019, 300(5):052023.
    Govaert, F.; Temmerman, E.; Kiekens, P. Development of voltammetric sensors for the determination of sodium dithionite and indanthrene/indigo dyes in alkaline solutions. Anal. Chim. Acta 1999, 385, 307–314.
    Meksi, N.; Ben Ticha, M.; Kechida, M.; Farouk Mhenni, M. Using of ecofriendly a -hydroxycarbonyls as reducing agents to replace sodium dithionite in indigo dyeing processes. J. of Cleaner Production, 2012, 24, 149-158.
    Gasana, E.; Westbroek, P.; Temmerman, E.; Thun, H.P.; Kiekens, P. A wall-jet disc electrode for simultaneous and continuous on-line measurement of sodium dithionite, sulfite and indigo concentrations by means of multistep chronoamperometry. Anal. Chim. Acta 2003, 486, 73–83.
    Nicholson, S. K.; John, P. The mechanism of bacterial indigo reduction. Appl. Microbiol. Biotechnol. 2005, 68, 117-123.
    Compton, R. G.; Perkin, S. J.; Gamblin, D, P.; Davis, J.; Marken, F.; Padden, A. N.; John, P. Clostridium isatidis colonised carbon electrodes: voltammetric evidence for direct solid state redox processes. New J. Chem. 2000, 24, 179 – 181.
    Dogan, D.; Turkdemir, H. Electrochemical treatment of actual textile indigo dye effluent. Pol. J. Environ. Stud. 2012, 21, 1185–1190.
    Chakraborty, J. N.; Chavan, R. B. Dyeing of denim with indigo. Indian J. Fibre Text. Res. 2004, 39, 100- 109.
    Uddin, M. G. Indigo Ring Dyeing of Cotton Warp Yarns for Denim Fabric. Chem. Mater. Eng. 2014, 2(7) 149-154.
    Buscio, V.; Crespi, M.; Gutiérrez-Bouzán, C. Sustainable dyeing of denim using indigo dye recovered with polyvinylidene difluoride ultrafiltration membranes. J. of Cleaner Production, 2015, 91, 201-207.
    Periyasamy, A. P.; Periyasami, S. Critical Review on Sustainability in Denim: A Step toward Sustainable Production and Consumption of Denim. ACS Omega 2023, 8, 4472−4490.
    Manian, A. P.; Mueller, S.; Bechtold, T.; Pham, T. Quantification of indigo on denim textiles as basis for jeans recycling. Dyes Pigm. 2023, 216, 111327.
    Vickerstaff, T. The Physical Chemistry of Dyeing ( London:Oliver and Boyd, 1954).
    Younsook, S. Natural Indigo Dyeing of Cotton Fabric One-Step reduction / dyeing process. Text. Color. And Finish. 2010, 22, 101-109.
    Rai, S.; Saremi, R.; Sharma, S.; Minko, S. Environment-friendly nanocellulose-indigo dyeing of textiles. Green Chem. 2021.
    Chakraborty, J. N.; Mazumdar, P. Indigo Dyeing of Cotton using Alkaline Catalase and Additives. Sustainability 2020, 7, 1-8.
    Peters, R. H. Physical chemistry of dyeing: In Textile Chemistry, vol. III. Elsevier Scientific Publishing Company, 1975).
    Mitsuhiko, H. New analytical method of dye aggregation using PCA method. Dyes Pigm. 1994, 27(2), 123-132.
    Burkinshaw, S. M.; Gotsopoulos, A. Pretreatment of cotton to enhance its dye ability. Dyes Pigm. 1999, 2, 197-195.
    Dapeng, L.; Gang, S. Colouration of textile with self-dispersible carbon black nanoparticle. Dyes Pigm. 2005, 72, 144-149.
    Popoola, A.V.; Adetuyi, A. O.; Jabar, J. M. Effect of temperature on the dye uptake of procion dyed cotton fabric. Asian Dyers. 2009, 2, 47-49.
    Blackburn, R. S.; Bechtold, T.; John, P.; The development of indigo reduction methods and pre-reduced indigo products. Color. Technol. 2009, 125, 193-207.
    Aspland, J., Vat dyes and their application. Text. Chem. Colorist 1992, 24, 22–24
    Kim, K. S.; Park, J. O.; Ryu, B. H.; and Choi, H. S. Reduction of nitro and nitroso compounds by glucose and baker's yeast. Kor. J. Biotechnol. Bioeng., 1996, 11, 623.
    Lee, Y. and Kim, K. Selective Reduction by Microbial Aldehyde Reductase. J. Life Sci., 2006, 16, 375-381.
    Shin, Y.; Son, K. and Yoo, D. I. Development of Eco-friendly Reduction Process for Indigo Dyeing: Using Hansenula misumaiensis Strain. Color. Technol., 2014, 26, 237-241.
    Shin, Y.; Son, K. and Yoo, D. I. Using Saccharomyces cerevisiae Strains as Biocatalyst for Indigo Reduction. Fiber. Polym., 2019, 20, 80-85.
    Shin, Y.; Son, K. and Yoo, D. I. Effect of pH Condition on Natural Indigo (Indigofera tinctoria) Reduction by Yeast (Saccharomyces cerevisiae). Fiber. Polym., 2019, 20(12), 2570-2580.
    Shin, Y.; Son, K. and Yoo, D. I. Indigo Dyeing onto Ramie Fabric via Microbial Reduction: Reducing Power Evaluation of Some Bacterial Strains Isolated from Fermented Indigo Vat. Fiber. Polym., 2016, 17, 1000-1006.
    Etters, J. N. and Hou, M. Equilibrium Sorption Isotherms of Indigo on Cotton Denim Yarn: Effect of pH. Text. Res. J., 1991, 61, 773.
    Etters, J. N. Advances In Indigo Dyeing: Implications for the Dyer, Apparel Manufacturer and Environment. Text. Chem. Color., 1995, 27, 17.
    Kawahito, M.; Urakawa, H.; Ueda, M.; Kajiwara, K. Color in Cloth Dyed with Natural Indigo and Synthetic Indigo. Fiber, 2002, 58(4), 122–128.
    Arnaldo, R. O. Índigo, uma molécula bastante interesante. Rev. Quim. 2012, 106, 32–57.
    Platania, E.; Lofrumento, C.; Lottini, E.; Azzaro, E.; Ricci M.; Becucci, M. Tailored micro-extraction method for Raman/SERS detection of indigoids in ancient textiles. Anal. Bioanal. Chem. 2015, 407, 6505-6514.
    Tatsch, E.; Schrader, B. Near-Infrared Fourier Transform Raman Spectroscopy of Indigoids. J. Raman Spectrosc. 1995, 26, 467-473.
    Celis, F.; Tirapegui, C.; García, M. P.; Aracena, A. O. Identification of coexisting indigo species in an ancient green thread using direct plasmon-enhanced Raman spectroscopy. J. Chil. Chem. Soc., 2020, 65(2), 4798-4803.
    R. Orij, S. Brul, and G. T. Smits, Biochim. Biophys. Acta, 1810, 933 (2011)
    Saikhao, L.; Setthayanond, J.; Karpkird, T.; Bechtold, T.; Suwanruji, P. Green reducing agents for indigo dyeing on cotton fabrics. J. Clean. Prod., 2018, 197, 106-113.
    Vuorema, A.; John, P.; Keskitalo, M.; Kulandainathan, M. A. and Marken, F. Electrochemical and sonoelectrochemical monitoring of indigo reduction by glucose. Dyes Pigm., 2008, 76, 542-549.
    Vuorema, A.; John, P.; Keskitalo, M.; Mahon, M. F.; Kulandainathan, M. A. and Marken, F. Anthraquinone catalysis in the glucose-driven reduction of indigo to leuco-indigo. Phys. Chem. Chem. Phys., 2009, 11, 1816.
    Blackburn, R. S. and Harvey, A. Green Chemistry Methods in Sulfur Dyeing:  Application of Various Reducing d-Sugars and Analysis of the Importance of Optimum Redox Potential. Environ. Sci. Technol., 2004, 38, 4034.
    Vuorema, A.; John, P.; Keskitalo, M.; Mahon, M. F. Electrochemical determination of plant-derived leuco-indigo after chemical reduction by glucose. J. Appl. Electrochem., 2008, 38, 1683-1690.
    Meksi, N.; Ticha, M. B.; Kechida, M. and Mhenni, M. F. Using of ecofriendly α-hydroxycarbonyls as reducing agents to replace sodium dithionite in indigo dyeing processes. J. Clean. Prod., 2012, 24, 149.
    Kulandainathan, M. A.; Patil, K.; Muthukumaran, A.; Chavan, R. B. Review of the process development aspects of electrochemical dyeing: its impact and commercial applications. Color. Technol., 2007, 123(3), 143-151.
    Novotná, P.; Boon, J. J.; Horst, J.; Pacákovsá, V. Photodegradation of indigo in dichloro-methane solution. Color. Technol., 2003, 119(3), 121-127.
    Buscio, V.; Crespi, M.; Gutiérrez-Bouzán, C. A Critical Comparison of Methods for the Analysis of Indigo in Dyeing Liquors and Effluents. Materials, 2014, 7, 6184-6193.
    Linhares, M.; Rebelo, S. L. H.; Simões, M. M. Q.; Silva, A. M. S.; Neves, M. G. P. M. S.; Cavaleiro, J. A. S.; Freire, C. Biomimetic oxidation of indole by Mn(III)porphyrins. Appl. Catal. A-Gen., 2014, 470, 427-433.
    Lasopha, S.; Watanesk, R.; Dejmanee, S. Comparative Study on Traditional Indigo Dyeing onto Cotton Fabric Using Ripe Banana and Sodium Dithionite as Reducing Agents. Asian J. Chem. 2015, 27(1), 28-32.

    下載圖示
    QR CODE