簡易檢索 / 詳目顯示

研究生: 王健宇
Wang, Chien-Yu
論文名稱: 投落送資料對梅雨期間中尺度對流渦旋模擬的影響
The Impact of Dropsonde Data on Simulation of a Mesoscale Convective Vortex in a Mei-yu Season
指導教授: 簡芳菁
Chien, Fang-Ching
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 150
中文關鍵詞: 中尺度對流渦旋投落送資料同化系集預報
DOI URL: https://doi.org/10.6345/NTNU202204057
論文種類: 學術論文
相關次數: 點閱:127下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用WRF模式配合EAKF資料同化系統,針對SoWMEX期間一中尺度對流渦旋進行投落送資料的資料同化實驗,藉以了解同化投落送資料對模式初始場與後續的數值模擬有甚麼影響。後再利用系集預報的特性將系集成員分組進行合成分析,藉由討論不同成員間的差異進一步了解此中尺度對流渦旋個案的生成機制。
    模擬結果顯示,同化投落送資料可以獲得更接近觀測的中低層初始風場,使模擬結果具有較強的低層噴流帶,並且可以增加渦旋發展區域的水氣混合比與降低區域內氣壓,為該處創造有利對流的環境。系集成員差異之結果與投落送實驗相似,成員中降水與雷達回波模擬較佳的組別在渦旋發生區域也比模擬較差的組別有更強的西南低層噴流、較低的氣壓與較多的水氣傳送與輻合。因此,低層水氣輻合進入渦旋顯然在渦旋的增強過程中扮演關鍵的角色;同時,實驗也發現模擬結果較佳者在渦旋中層有較明顯持續增溫的情形。可見本文個案之中尺度對流渦旋的增強與第二類條件不穩定機制有關,較強的西南風將較多的水氣送入渦旋,水氣上升凝結後釋放較多潛熱導致中層增暖,進而使得渦旋持續增強,形成一正回饋的機制,有利個案成長為一成熟的中尺度對流渦旋。

    目錄 致謝I 摘要II 目錄III 圖表目錄V 第一章 前言 1.1文獻回顧01 1.2研究動機09 第二章 觀測資料分析 2.1綜觀環境介紹11 2.2累積雨量14 2.3中尺度環境概觀15 2.4渦旋區雲系發展概況17 2.5垂直環境變化19 2.6小結21 第三章 資料來源與研究方法 3.1WRF模式簡介23 3.2EAKF簡介25 3.3資料來源29 3.4模式設定與實驗設計30 第四章 投落送資料對模擬之影響 4.1綜觀環境之模擬33 4.2UX組及NUX組模擬結果之比較36 4.3影響實驗結果之探討46 4.4小結53 第五章 系集成員差異分析 5.1系集成員分組55 5.2合成分析57 5.3UX_A組與UX_D組差異比較66 5.4小結77 第六章 結論 6.1投落送實驗總結79 6.2系集成員合成分析總結81 6.3未來展望85 參考文獻87 圖表93

    丘台光、許皓淳、林宏聖,1990:華南梅雨季中尺度對流系統的預報
    與研究,氣象學報,36,117-128。
    林昀瑱,2008:臺美氣象先進資料同化與預報模式系統發展技術合作
    協議-系集調整卡爾曼濾波( Ensemble Adjustment Kalman
    Filter),中央氣象局出國報告。
    林昀瑱、劉輝、馮欽賜,2010:「SoWMEX實驗EAKF系集資料同化系
    統初步分析」,美華海洋大氣學會第五屆國際海洋大氣研討會,
    交通部中央氣象局,203-208。
    陳泰然,2004:近期梅雨鋒面研究之回顧。大氣科學,32,225-245。
    陳泰然,2007:最近之梅雨研究回顧。大氣科學,35,261-285。
    陳泰然,2000:台灣豪雨研究回顧與展望。科學發展月刊,28,
    103-106。
    賴曉薇、周仲島,2014:梅雨鋒內海洋性中尺度對流渦旋之分析與模
    擬。大氣科學,42,129-152
    簡芳菁、謝章眉,2008:投落送與 QuikSCAT 資料同化對 WRF 模擬
    之影響,大氣科學,36,217-247
    Aberson, S. D., and J. L. Franklin, 1999:Impact on hurricane track and
    intensity forecasts of GPS dropwindsonde observations from the
    first-season flights of the NOAA Gulfstream-IV jet aircraft. Bull.
    Amer. Meteor. Soc., 80, 421–427.
    Anderson, J. L., 2001:An ensemble adjustment Kalman filter for data
    assimilation. Mon. Wea. Rev., 129, 2884-2903.
    Akiyama, T., 1984:A medium-scale cloud cluster in a Baiu front. Part I:
    Evolution process and a fine structure. J. Meteor. Soc. Japan, 62,
    485–504.
    Brands, E.A., 1990:Evolution and structure of the 6-7 May 1985
    mesoscale convective system and associated vortex. Mon. Wea. Rev.,
    118, 109-127.
    Burpee, R. W., S. D. Aberson, J. L. Franklin, S. J. Lord, and R. E. Tuleya,
    1996:The Impact of Omega Dropwindsondes on Operational
    Hurricane Track Forecast Models. Bull. Amer. Meteor. Soc., 77,
    925–933.
    Chen, C.-S. and Y.-L. Chen, 2003:the rainfall characteristics of Taiwan.
    Mon. Wea. Rev. , 131, 1323-1341.
    Chen, G.T.-J., 2004:Research on the phenomena of Meu-Yu during the
    past quarter century. An overview. World Scientific Series for
    Meteorology of East Asia Vol. 2, East Asian Monsoon, C. P. Chang,
    Ed., World Scientific Publishing Co., 357–403.
    Chen, G. T.- J., C.-C. Wang, and S. C.-S. Liu, 2003:Potential vorticity
    diagnostics of a Mei-yu front case.Mon. Wea. Rev., 131, 2680-2696.
    Chen, G. T.- J.,C.-C. Wang, and S. W. Chang, 2008:A diagnostic case
    study of Mei- yu frontogenesis and development of wavelike frontal
    disturbances in the subtropical environment. Mon. Wea. Rev., 136,
    41–61.
    Chen, G. T.- J., and C.-P. Chang, 1980: The structure and vorticity budget
    of an early summer monsoon trough (mei-yu) over southeastern
    China and Japan. Mon. Wea. Rev., 108, 942–953.
    Chen, G. T. -J., and H.C. Chou, 2006:A summertime severe weather
    event occurred in the Taipei Basin. TAO., 17, 3-22.
    Chen, Y.-L., 1993:Some synoptic-scale aspects of the surface fronts
    over southern China during TAMEX. Mon. Wea. Rev., 121, 50–64.
    Chong, M., and O. Bousqet, 1999:A mesovortex within a near-equatorial
    mesoscale convective system during TOGA COARE. Mon. Wea.
    Rev., 127, 1145-1156.
    Chou, L. C., C.-P. Chang, and R. T. Williams, 1990:A numerical
    simulation of the Mei-Yu front and the associated low level jet.
    Mon. Wea. Rev.,118, 1408–1428.
    Davison, N. E., K. Kurihara, T. Kato, G. Mills, and K. Puri, 1998:
    Dynamics and prediction of a mesoscale extreme rain event in the
    baiu front over Kyushu, Japan. Mon. Wea. Rev., 126, 1608– 1629.
    Ding, Y. H., 1992:Summer monsoon rainfalls in China. J. Meteor.Soc.
    Japan, 70, 373–396.
    Evensen, G., 1994:Sequential data assimilation with a nonlinear quasi-
    geostrophic model using Monte Carlo method to forecast error
    statistics. J. Geophys. Res., 99, 10143-10162.
    Epstein E. S., 1969:Stochastic dynamic prediction. Tellus, Ser.
    A, 21, 739–759, 1969.
    James, C., R. W. Arritt and C. J. Anderson, 2007: Idealized Mesoscale
    Convective System Structure and Propagation Using Convective
    Parameterization. Mon. Wea. Rev., 136, 2422-2442.
    Jou, B. J.-D., W.-C. Lee, and R. H. Johnson, 2011:An overview of
    SoWMEX/ TiMREX and its operation. The Global Monsoon
    System: Research and Forecast, 2nd ed. C.-P. Chang, Ed., World
    Scientific, 303–318.
    Li, J., Y. –L. Chen, 1998:Barrier jets during TAMEX. Mon. Wea. Rev.,
    126, 959-971.
    Lai, H.-W., C. A. Davis, and B. J.-D. Jou, 2011: A subtropical oceanic
    mesoscale convective vortex observed during SoWMEX/
    TiMREX. Mon. Wea. Rev., 139, 2367–2385.
    Poterjoy, J., and F. Zhang, 2014: Predictability and genesis of Hurricane
    Karl (2010) examined through the EnKF assimilation of field
    observations collected during PREDICT. J. Atmos. Sci.,71, 1260–
    1275.
    Schlatter, T. W., F. H. Carr, R. H. Langland, R. E. Carbone, N. A. Crook,
    R. W. Daley, J. C. Derber, and S. L. Mullen, 1999:A five-year plan
    for research related to the assimilation of meteorological data.
    NCAR Tech Note 443, 45 .
    Tuleya, R. E., and S. J. Lord, 1997:The impact of dropwindsonde data on
    GFDL Hurricane model forecasts using global analyses. Wea.
    Forecasting, 12, 307-323.
    Watson, A.I., J.G.Meitin and J.B. Cunning, 1988:Evolution of the
    kinematic structure and precipitation characteristics of a mesoscale
    convective system on 20 May 1979. Mon Wea. Rev., 116, 1555 –
    1567.
    Wu, C.-C., K.-H. Chou, Y. Wang, and Y.-H. Kuo, 2007:Tropical cyclone
    initialization and prediction based on four-dimensional variational
    data assimilation. J. Atmos. Sci., 63, 2383-2395.
    Yu, C.-K., B.J.-D. Jou, and B. F. Smull, 1999:Formative stage of a
    long-lived mesoscale vortex observed by airborne Doppler radar.
    Mon. Wea. Rev., 127, 838–857.
    Zhang, Q.-H., K.-H. Lau, Y.-H. Kuo, and S.-J. Chen, 2003:A numerical
    study of a mesoscale convective system over the Taiwan Strait. Mon.
    Wea. Rev., 131, 1150-1170.

    下載圖示
    QR CODE