簡易檢索 / 詳目顯示

研究生: 鄭勤巧
TEE QIN QIAO
論文名稱: 咖啡酸預防高胰島素血症大鼠阿茲海默症之機制
Preventive mechanism of caffeic acid against Alzheimer's disease in hyperinsulinemic rats
指導教授: 沈賜川
Shen, Szu-Chuan
吳瑞碧
Wu, Swi-Bea
學位類別: 碩士
Master
系所名稱: 人類發展與家庭學系
Department of Human Development and Family Studies
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 134
中文關鍵詞: 咖啡酸高胰島素血症阿茲海默症
英文關鍵詞: caffeic acid, hyperinsulinemic, Alzheimer's disease
論文種類: 學術論文
相關次數: 點閱:205下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高脂飲食易促使肥胖、周邊胰島素阻抗及糖尿病等疾病進程,接續造成腦部胰島素阻抗而最終導致阿茲海默症(Alzheimer’s disease, AD)的發生。流行病學研究顯示,第二型糖尿病病患罹患阿茲海默症的機率較正常人高出兩到三倍。本實驗室先前以胰島素阻抗細胞模式篩選出本實驗樣品--咖啡酸(caffeic acid),且在動物實驗中發現其具有改善腦部醣類代謝及胰島素訊息傳遞的效果。因此,本研究進一步探討咖啡酸可否預防以高脂飲食(脂質佔總熱量60%)誘導高胰島素血症大鼠阿茲海默症的發生,並釐清其機制。
    水迷宮試驗結果顯示,合併管餵咖啡酸(30mg/ kg b.w.) 30週後可顯著改善高胰島素血症大鼠的學習及記憶能力;在抗氧化系統中,咖啡酸可預防高脂飲食所造成的海馬迴及大腦皮質超氧岐化酶 (superoxide dismutase, SOD) 失活,並可增加大腦皮質麩胱甘肽 (glutathione) 捕捉自由基的能力;以西方點墨法分析發現,咖啡酸可增加高胰島素血症大鼠海馬迴胰島素訊息傳遞下游路徑蛋白:蛋白激酶B (p-AKT/PKB)、磷酸化肝醣合成酶 (phospho-glycogen synthase 3β, p-GSK3β) 的表現量,以降低tau蛋白的過度磷酸化。此外,咖啡酸可降低海馬迴類澱粉蛋白前驅物 (amyloid protein precursor, APP)及APP β部位切割酵素 (β-site APP cleaving enzyme, BACE) 的表現量,進而減少海馬迴中類澱粉蛋白1-42 (β-amyloid 1-42, Aβ 1-42) 的堆積。在大腦皮質部分,咖啡酸可提高具有神經保護功效的腦源性神經滋養因子 (brain-derived neurotrophic factor, BDNF) 及突觸相關蛋白的表現,且有助於降低胰島素降解酵素 (insulin degrading enzyme, IDE) 因代償作用的過量表現。
    由以上結果推測,咖啡酸可透過改善胰島素/瘦體素訊息傳遞、降低神經細胞氧化壓力、減少tau蛋白過度磷酸化、阻斷類澱粉蛋白生成及增加神經滋養因子等神經保護機制,以有效預防阿茲海默症的發生。

    High fat-diet (HFD) promotes obesity, increases the risk of insulin resistance and diabetes mellitus (DM). It also contributes to brain insulin resistance and the pathogenesis of Alzheimer’s disease (AD). Epidemiologically, patients with Type 2 DM have a two-to three-fold increased risk for AD. We previously confirmed caffeic acid improves glucose metabolism and alleviates insulin resistance in cell and animal models. In this study, we further investigate the alleviative effect of caffeic acid on AD pathogenesis and associated mechanisms in HFD (60% fat) induced hyperinsulinemic rats.
    According to the results of Morris water maze, caffeic acid (30mg/ kg b.w./ day) significantly ameliorated memory and learning impairment in hyperinsulinemic rats. Caffeic acid enhanced superoxide dismutase (SOD) activity and the glutathione free radical scavenger activity in hyperinsulinemic rats. The results from western blotting shows that protein expressions of p-AKT/Protein kinase B (p-AKT/ PKB), p-glycogen synthase kinase3β (p-GSK3β) significantly increased, whereas, the expression of p-tau decreased in hippocampus of rats administered with caffeic acid compared with the hyperinsulinemic control group. Besides, the expression of amyloid precursor protein (APP) and β-site APP cleaving enzyme (BACE) were attenuated in the hippocampus of hyperinsulinemic rats treated with caffeic acid, therefore lowered the level of β-amyloid 1-42(Aβ 1-42). Experimentally, caffeic acid increased the expressions of brain-derived neurotrophic factor (BDNF) and synaptic protein in the cortex compared with the hyperinsulinemic control group. Compensatory effect of insulin degrading ezyme (IDE) in hyperinsulinemic rats was also reduced by the administration of caffeic acid.
    Above observation suggests that caffeic acid may exhibit the neuroprotective effect via improves insulin/leptin signaling, decreases oxidative stress, attenuates the hyperphosphorylation of tau protein and amyloidgenic pathway, and upregulates the expression of neurotrophic factor, thus may prevent the pathogenesis of AD.

    中文摘要 I Abstract II 目錄 IV 圖次 VII 表次 X 第一章 前言 1 第二章 文獻回顧 3 第一節 胰島素阻抗 3 一、 高脂飲食與胰島素阻抗 3 二、 腦部胰島素阻抗 5 第二節 阿茲海默症(Alzheimer’s disease; AD)7 一、 阿茲海默症流行病學 7 二、 阿茲海默症的分類 8 三、 阿茲海默症病理機轉 8 四、 阿茲海默症疾病進程 10 五、 阿茲海默症治療方式 12 第三節 阿茲海默症與第二型糖尿病 14 一、 阿茲海默症與第二型糖尿病相關研究 14 二、 阿茲海默症與第二型糖尿病共同致病因子 14 第四節 阿茲海默症發生的路徑蛋白表現 20 一、 腦部胰島素訊息傳遞途徑 20 二、 腦部類澱粉蛋白生成途徑 21 三、 腦部神經纖維糾結生成路徑 24 四、 腦部類澱粉蛋白降解路徑 26 五、 腦部神經滋養因子 27 第五節 誘發阿茲海默症之實驗動物模式探討 29 一、 實驗動物腦部注射類澱粉蛋白之阿茲海默症模式 29 二、 基因轉殖老鼠之阿茲海默症模式 29 三、 飲食內容調整間接誘發阿茲海默症模式 30 第六節 Thiazolidinediones (TZD) 藥物 Pioglitazone 31 一、 Pioglitazone與第二型糖尿病糖尿病 31 二、 Pioglitazone與學習記憶能力 32 第七節 酚酸與阿茲海默症 33 一、 天然酚酸 33 二、 咖啡酸(Caffeic acid) 33 三、 咖啡酸與阿茲海默症之相關研究 34 第三章 研究動機與目的及實驗架構 35 第一節 研究動機與目的 35 第二節 實驗架構 36 第四章 實驗材料與方法 37 第一節 實驗材料 37 第二節 實驗步驟與方法 41 第五章 結果 55 第一節 咖啡酸對高胰島素血症大鼠學習及記憶能力的影響 55 一、 水迷宮試驗 55 第二節 咖啡酸對高胰島素血症大鼠腦部病理切片之影響 62 一、 腦部切片蘇木紫與伊紅染色(Hematoxylin and Eosinstain, H&E stain)分析 62 第三節 咖啡酸對高胰島素血症大鼠海馬迴及皮質抗氧化酵素活性之影響 65 一、 咖啡酸對高胰島素血症大鼠海馬迴及皮質超氧岐化酶(SOD)表現之影響 65 二、 咖啡酸對高胰島素血症大鼠海馬迴及皮質過氧化氫酶(catalase)活性之影響 65 三、 咖啡酸對高胰島素血症大鼠海馬迴及皮質氧化態麩胱甘肽(GSSG)與總麩胱甘肽(total GSH)比值之影響 66 第四節 咖啡酸對高胰島素血症大鼠海馬迴及皮質發炎因子之影響 70 一、 咖啡酸對高胰島素血症大鼠海馬迴及皮質介白素-6 (IL-6)表現量之影響 70 二、 咖啡酸對高胰島素血症大鼠海馬迴及皮質腫瘤壞死因子α (TNF-α)表現量之影響 70 第五節 咖啡酸對高胰島素血症大鼠海馬迴及大腦皮質類澱粉蛋白表現之影響73 第六節 咖啡酸對高胰島素血症大鼠海馬迴及大腦皮質蛋白質表現之影響 75 一、 咖啡酸對高胰島素血症大鼠海馬迴及大腦皮質Tau蛋白磷酸化路徑蛋白質表現之影響 75 二、 咖啡酸對高胰島素血症大鼠海馬迴及大腦皮質類澱粉蛋白生成路徑蛋白質表現之影響 82 三、 咖啡酸對高胰島素血症大鼠海馬迴及皮質類澱粉蛋白降解路徑蛋白質表現之影響 90 四、 咖啡酸對高胰島素血症大鼠海馬迴及皮質神經可塑性相關蛋白質表現之影響 92 第六章 討論 98 第一節 咖啡酸對高胰島素血症大鼠學習及記憶能力的影響 98 第二節 咖啡酸對高胰島素血症大鼠腦部病理切片之影響 100 第三節 咖啡酸對高胰島素血症大鼠海馬迴及皮質抗氧化活性之影響 101 第四節 咖啡酸對高胰島素血症大鼠海馬迴及皮質發炎因子之影響 103 第五節 咖啡酸對高胰島素血症大鼠海馬迴及大腦皮質蛋白質表現之影響 104 一、 咖啡酸對高胰島素血症大鼠海馬迴及大腦皮質Tau蛋白磷酸化路徑蛋白質表現之影響 104 二、 咖啡酸對高胰島素血症大鼠海馬迴及大腦皮質類澱粉蛋白生成路徑蛋白質表現之影響 106 三、 咖啡酸對高胰島素血症大鼠海馬迴及大腦皮質類澱粉蛋白降解路徑蛋白質表現之影響 108 四、 咖啡酸對高胰島素血症大鼠海馬迴及皮質神經可塑性相關蛋白質表現之影響 109 第七章 結論 111 第八章 參考文獻 114 第九章 附錄 127 第一節 咖啡酸對高胰島素血症大鼠攝食飲水量及生長狀況之影響 127 第二節 咖啡酸對高胰島素血症大鼠血糖及血清荷爾蒙濃度之影響 130 第三節 咖啡酸對高胰島素血症大鼠被動迴避試驗的影響 134

    Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., Phelps, C. H. (2011). The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement, 7(3), 270-279. doi: 10.1016/j.jalz.2011.03.008
    Alzheimer's association. (2011). New criteria and guidelines for the diagnosis of Alzheimer’s disease published for first time in 27 years [Press release]
    Alzheimer's association. (2013). 2013 Alzheimer's Disease Facts and Figures: Alzheimer's Association.
    Anandatheerthavarada, H. K., Biswas, G., Robin, M.-A., & Avadhani, N. G. (2003). Mitochondrial targeting and a novel transmembrane arrest of Alzheimer's amyloid precursor protein impairs mitochondrial function in neuronal cells. The Journal of Cell Biology, 161(1), 41-54.
    Anantharaman, M., Tangpong, J., Keller, J. N., Murphy, M. P., Markesbery, W. R., Kiningham, K. K., & St. Clair, D. K. (2006). β-Amyloid Mediated Nitration of Manganese Superoxide Dismutase: Implication for Oxidative Stress in a APPNLh/NLh X PS-1P264L/P264L Double Knock-In Mouse Model of Alzheimer's Disease. The American Journal of Pathology, 168(5), 1608-1618. doi: http://dx.doi.org/10.2353/ajpath.2006.051223
    Arancibia, S., Silhol, M., Moulière, F., Meffre, J., Höllinger, I., Maurice, T., & Tapia-Arancibia, L. (2008). Protective effect of BDNF against beta-amyloid induced neurotoxicity in vitro and in vivo in rats. Neurobiology of Disease, 31(3), 316-326. doi: http://dx.doi.org/10.1016/j.nbd.2008.05.012
    Avila, J., Leon-Espinosa, G., Garcia, E., Garcia-Escudero, V., Hernandez, F., & Defelipe, J. (2012). Tau Phosphorylation by GSK3 in Different Conditions. Int J Alzheimers Dis, 2012, 578373. doi: 10.1155/2012/578373
    Avila, J., Lucas, J. J., Perez, M., & Hernandez, F. (2004). Role of Tau Protein in Both Physiological and Pathological Conditions. Physiological Reviews, 84(2), 361-384. doi: 10.1152/physrev.00024.2003
    Ballatori, N., Krance Suzanne, M., Notenboom, S., Shi, S., Tieu, K., & Hammond Christine, L. (2009). Glutathione dysregulation and the etiology and progression of human diseases Biological Chemistry (Vol. 390, pp. 191).
    Banks, W. A., Jaspan, J. B., & Kastin, A. J. (1997). Selective, Physiological Transport of Insulin Across the Blood-Brain Barrier: Novel Demonstration by Species-Specific Radioimmunoassays. Peptides, 18(8), 1257-1262. doi: http://dx.doi.org/10.1016/S0196-9781(97)00198-8
    Bhat, N. R., & Thirumangalakudi, L. (2013). Increased Tau phosphorylation and impaired brain insulin/IGF signaling in mice fed a high fat/high cholesterol diet. J Alzheimers Dis, 36(4), 781-789. doi: 10.3233/JAD-2012-121030
    Bignante, E. A., Heredia, F., Morfini, G., & Lorenzo, A. (2013). Amyloid beta precursor protein as a molecular target for amyloid beta--induced neuronal degeneration in Alzheimer's disease. Neurobiol Aging, 34(11), 2525-2537. doi: 10.1016/j.neurobiolaging.2013.04.021
    Brent, D. A., Gary, L. O., Zaid, A., & Gordon, W. G. (2013). Alzheimer’s Disease and Diabetes Understanding Alzheimer's Disease (pp. 409-449): InTech.
    Buettner, R., Scholmerich, J., & Bollheimer, L. C. (2007). High-fat Diets: Modeling the Metabolic Disorders of Human Obesity in Rodents. Obesity, 15(4), 798-808. doi: 10.1038/oby.2007.608
    Chao, P. C., Hsu, C. C., & Yin, M. C. (2009). Anti-inflammatory and anti-coagulatory activities of caffeic acid and ellagic acid in cardiac tissue of diabetic mice. Nutr Metab (Lond), 6, 33. doi: 10.1186/1743-7075-6-33
    Chelikani, P., Fita, I., & Loewen, P. C. (2004). Diversity of structures and properties among catalases. Cellular and Molecular Life Sciences CMLS, 61(2), 192-208. doi: 10.1007/s00018-003-3206-5
    Cho, D. H., Lee, E. J., Kwon, K. J., Shin, C. Y., Song, K. H., Park, J. H., Han, S. H. (2013). Troglitazone, a thiazolidinedione, decreases tau phosphorylation through the inhibition of cyclin-dependent kinase 5 activity in SH-SY5Y neuroblastoma cells and primary neurons. J Neurochem, 126(5), 685-695. doi: 10.1111/jnc.12264
    Cholerton, B., Baker, L. D., & Craft, S. (2011). Insulin resistance and pathological brain ageing. Diabet Med, 28(12), 1463-1475. doi: 10.1111/j.1464-5491.2011.03464.x
    Chung, Y. H., Shin, C. M., Joo, K. M., Kim, M. J., & Cha, C. I. (2002). Region-specific alterations in insulin-like growth factor receptor type I in the cerebral cortex and hippocampus of aged rats. Brain Res, 946(2), 307-313. doi: http://dx.doi.org/10.1016/S0006-8993(02)03041-X
    Clodfelder-Miller, B., Zmijewska, A., Johnson, G., & Jope, R. (2006). Tau Is Hyperphosphorylated at Multiple Sites in Mouse Brain In Vivo After Streptozotocin-Induced Insulin Deficiency. Diabetes, 55(12), 3320-3325.
    Correia, S. C., Santos, R. X., Carvalho, C., Cardoso, S., Candeias, E., Santos, M. S., Moreira, P. I. (2012). Insulin signaling, glucose metabolism and mitochondria: major players in Alzheimer's disease and diabetes interrelation. Brain Res, 1441, 64-78. doi: 10.1016/j.brainres.2011.12.063
    Correia, S. C., Santos, R. X., Perry, G., Zhu, X., Moreira, P. I., & Smith, M. A. (2011). Insulin-resistant brain state: the culprit in sporadic Alzheimer's disease? Ageing Res Rev, 10(2), 264-273. doi: 10.1016/j.arr.2011.01.001
    Cross, D. A. E., Alessi, D. R., Cohen, P., Andjelkovich, M., & Hemmings, B. A. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature, 378(6559), 785-789.
    Cummings, J. L. (2004). Alzheimer's Disease. New England Journal of Medicine, 351(1), 56-67. doi: doi:10.1056/NEJMra040223
    Davidson, T. L., Monnot, A., Neal, A. U., Martin, A. A., Horton, J. J., & Zheng, W. (2012). The effects of a high-energy diet on hippocampal-dependent discrimination performance and blood-brain barrier integrity differ for diet-induced obese and diet-resistant rats. Physiol Behav, 107(1), 26-33. doi: 10.1016/j.physbeh.2012.05.015
    de Ferranti, S., & Mozaffarian, D. (2008). The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences. Clin Chem, 54(6), 945-955. doi: 10.1373/clinchem.2007.100156
    de la Monte, S. M. (2012). Brain Insulin Resistance and Deficiency as Therapeutic Targets in Alzheimer's Disease. Curr Alzheimer Res, 9, 35-66.
    de la Monte, S. M., Longato, L., Tong, M., & Wands, J. R. (2009). Insulin resistance and neurodegeneration: roles of obesity, type 2 diabetes mellitus and non-alcoholic steatohepatitis. Current opinion in investigational drugs (London, England : 2000), 10(10), 1049-1060.
    Defronzo, R. A., Tripathy, D., Schwenke, D. C., Banerji, M., Bray, G. A., Buchanan, T. A., Study, A. N. (2013). Prevention of Diabetes With Pioglitazone in ACT NOW: Physiologic Correlates. Diabetes, 62(11), 3920-3926. doi: 10.2337/db13-0265
    Diniz, B. S., & Teixeira, A. L. (2011). Brain-derived neurotrophic factor and Alzheimer's disease: physiopathology and beyond. Neuromolecular Med, 13(4), 217-222. doi: 10.1007/s12017-011-8154-x
    Elder, G. A., Gama Sosa, M. A., & De Gasperi, R. (2010). Transgenic mouse models of Alzheimer's disease. Mt Sinai J Med, 77(1), 69-81. doi: 10.1002/msj.20159
    Eom, T. K., Ryu, B., Lee, J. K., Byun, H. G., Park, S. J., & Kim, S. K. (2013). beta-secretase inhibitory activity of phenolic acid conjugated chitooligosaccharides. J Enzyme Inhib Med Chem, 28(1), 214-217. doi:10.3109/14756366.2011.629197
    Esterson, Y. B., Zhang, K., Koppaka, S., Kehlenbrink, S., Kishore, P., Raghavan, P., Hawkins, M. (2013). Insulin Sensitizing and Anti-Inflammatory Effects of Thiazolidinediones Are Heightened in Obese Patients. J Investig Med, 61(8), 1152-1160. doi: 10.231/JIM.0000000000000017
    Evin, G., Zhu, A., Holsinger, R. M. D., Masters, C. L., & Li, Q.-X. (2003). Proteolytic processing of the Alzheimer's disease amyloid precursor protein in brain and platelets. J Neurosci Res, 74(3), 386-392. doi: 10.1002/jnr.10745
    Finder, V. H. (2010). Alzheimer's Disease: A General Introduction and Pathomechanism. Journal of Alzheimer's Disease, 22(0), 5-19. doi: 10.3233/JAD-2010-100975
    Folch, J., Pedrós, I., Patraca, I., Sureda, F., Junyent, F., Beas-Zarate, C., Camins, A. (2012). Neuroprotective and anti-ageing role of leptin. Journal of Molecular Endocrinology, 49(3), R149-R156.
    Frautschy, S. A., Yang, F., Calderon, L., & Cole, G. M. (1996). Rodent models of Alzheimer's disease: rat A beta infusion approaches to amyloid deposits. Neurobiol Aging, 17(2), 311-321.
    Freiherr, J., Hallschmid, M., Frey, W. H., 2nd, Brunner, Y. F., Chapman, C. D., Holscher, C., Benedict, C. (2013). Intranasal insulin as a treatment for Alzheimer's disease: a review of basic research and clinical evidence. CNS Drugs, 27(7), 505-514. doi: 10.1007/s40263-013-0076-8
    Fumagalli, F., Racagni, G., & Riva, M. A. (2005). The expanding role of BDNF: a therapeutic target for Alzheimer's disease? Pharmacogenomics J, 6(1), 8-15.
    Gülçin, İ. (2006). Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology, 217(2–3), 213-220. doi: http://dx.doi.org/10.1016/j.tox.2005.09.011
    Genuth, S. M. (2013). How does pioglitazone prevent progression of impaired glucose tolerance to diabetes? Diabetes, 62(11), 3663-3665. doi: 10.2337/db13-1175
    Greco, S., Bryan, K., Sarkar, S., Zhu, X., Smith, M., Ashford, J. W., Casadesus, G. (2010). Leptin Reduces Pathology and Improves Memory in a Transgenic Mouse Model ofAlzheimer's Disease. Journal of Alzheimer's Disease, 19(4), 1155-1167. doi: 10.3233/JAD-2010-1308
    Greco, S., Sarkar, S., Johnston, J., & Tezapsidis, N. (2009). Leptin regulates tau phosphorylation and amyloid through AMPK in neuronal cells. Biochemical and Biophysical Research Communications, 380(1), 98-104. doi: http://dx.doi.org/10.1016/j.bbrc.2009.01.041
    Greco, S., Sarkar, S., Johnston, J., Zhu, X., Su, B., Casadesus, G., Tezapsidis, N. (2008). Leptin reduces Alzheimer’s disease-related tau phosphorylation in neuronal cells. Biochemical and Biophysical Research Communications, 376(3), 536-541. doi: http://dx.doi.org/10.1016/j.bbrc.2008.09.026
    Greenwood, C. E., & Winocur, G. (1990). Learning and memory impairment in rats fed a high saturated fat diet. Behav Neural Biol, 53(1), 74-87.
    Gunther, E. C., & Strittmatter, S. M. (2010). Beta-amyloid oligomers and cellular prion protein in Alzheimer's disease. J Mol Med (Berl), 88(4), 331-338. doi: 10.1007/s00109-009-0568-7
    Gupta, R., & Gupta, L. K. (2012). Improvement in long term and visuo-spatial memory following chronic pioglitazone in mouse model of Alzheimer's disease. Pharmacol Biochem Behav, 102(2), 184-190. doi: 10.1016/j.pbb.2012.03.028
    Hanger, D. P., Noble, W., & Seereeram, A. (2009). Meiators of tau phosphorylation in the pathogenesis of Alzheimer's disease. Expert Review, 9(11), 1647-1666.
    Hardy, J., & Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science, 297(5580), 353-356. doi: 10.1126/science.1072994
    Harvey, J. (2006). Leptin in Brain Function. In A. Lajtha & R. Lim (Eds.), Handbook of Neurochemistry and Molecular Neurobiology (pp. 655-676): Springer US.
    Harvey, J. (2013). Leptin and Cognitive Function Metabolic Syndrome and Neurological Disorders (pp. 485-500): John Wiley & Sons Ltd.
    Hernandez, F., Gomez de Barreda, E., Fuster-Matanzo, A., Lucas, J. J., & Avila, J. (2010). GSK3: a possible link between beta amyloid peptide and tau protein. Exp Neurol, 223(2), 322-325. doi: 10.1016/j.expneurol.2009.09.011
    Hernandez, F., Perez, M., Lucas, J. J., Mata, A. M., Bhat, R., & Avila, J. (2004). Glycogen synthase kinase-3 plays a crucial role in tau exon 10 splicing and intranuclear distribution of SC35. Implications for Alzheimer's disease. J Biol Chem, 279(5), 3801-3806. doi: 10.1074/jbc.M311512200
    Ho, L., Qin, W., Pompl, P. N., Xiang, Z., Wang, J., Zhao, Z., Pasinetti, G. M. (2004). Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer's disease. FASEB J, 18(7), 902-904. doi: 10.1096/fj.03-0978fje
    Huang, J., Hsia, S. H., Imamura, T., Usui, I., & Olefsky, J. M. (2004). Annexin II is a thiazolidinedione-responsive gene involved in insulin-induced glucose transporter isoform 4 translocation in 3T3-L1 adipocytes. Endocrinology, 145(4), 1579-1586. doi: 10.1210/en.2003-1197
    Isik, A. T. (2010). Late onset Alzheimer's disease in older people. Clin Interv Aging, 5, 307-311. doi: 10.2147/CIA.S11718
    Jeong, C. H., Jeong, H. R., Choi, G. N., Kim, D. O., Lee, U., & Heo, H. J. (2011). Neuroprotective and anti-oxidant effects of caffeic acid isolated from Erigeron annuus leaf. Chin Med, 6, 25. doi: 10.1186/1749-8546-6-25
    Jiang, L. Y., Tang, S. S., Wang, X. Y., Liu, L. P., Long, Y., Hu, M., Hong, H. (2012). PPARgamma agonist pioglitazone reverses memory impairment and biochemical changes in a mouse model of type 2 diabetes mellitus. CNS Neurosci Ther, 18(8), 659-666. doi: 10.1111/j.1755-5949.2012.00341.x
    Jolivalt, C. G., Lee, C. A., Beiswenger, K. K., Smith, J. L., Orlov, M., Torrance, M. A., & Masliah, E. (2008). Defective insulin signaling pathway and increased glycogen synthase kinase-3 activity in the brain of diabetic mice: parallels with Alzheimer's disease and correction by insulin. J Neurosci Res, 86(15), 3265-3274. doi: 10.1002/jnr.21787
    Jope, R. S., & Johnson, G. V. (2004). The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci, 29(2), 95-102. doi: 10.1016/j.tibs.2003.12.004
    Jope, R. S., Yuskaitis, C. J., & Beurel, E. (2007). Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics. Neurochem Res, 32(4-5), 577-595. doi: 10.1007/s11064-006-9128-5
    Julien, C., Tremblay, C., Phivilay, A., Berthiaume, L., Emond, V., Julien, P., & Calon, F. (2010). High-fat diet aggravates amyloid-beta and tau pathologies in the 3xTg-AD mouse model. Neurobiol Aging, 31(9), 1516-1531. doi: 10.1016/j.neurobiolaging.2008.08.022
    Kanda, Y., Shimoda, M., Hamamoto, S., Tawaramoto, K., Kawasaki, F., Hashiramoto, M., Kaku, K. (2010). Molecular mechanism by which pioglitazone preserves pancreatic β-cells in obese diabetic mice: evidence for acute and chronic actions as a PPARγ agonist. American Journal of Physiology - Endocrinology and Metabolism, 298(2), E278-E286.
    Kanoski, S. E. (2012). Cognitive and neuronal systems underlying obesity. Physiol Behav, 106(3), 337-344. doi: http://dx.doi.org/10.1016/j.physbeh.2012.01.007
    Kanoski, S. E., & Davidson, T. L. (2011). Western diet consumption and cognitive impairment: Links to hippocampal dysfunction and obesity. Physiol Behav, 103(1), 59-68. doi: http://dx.doi.org/10.1016/j.physbeh.2010.12.003
    Kanoski, S. E., Zhang, Y., Zheng, W., & Davidson, T. L. (2010). The effects of a high-energy diet on hippocampal function and blood-brain barrier integrity in the rat. J Alzheimers Dis, 21(1), 207-219. doi: 10.3233/JAD-2010-091414
    Kaundal, R. K., & Sharma, S. S. (2010). Peroxisome proliferator-activated receptor gamma agonists as neuroprotective agents. Drug News Perspect, 23(4), 241-256. doi: 10.1358/dnp.2010.23.4.1437710
    Kim, H.-S., Hwang, Y.-C., Koo, S.-H., Park, K. S., Lee, M.-S., Kim, K.-W., & Lee, M.-K. (2013). PPAR-γ Activation Increases Insulin Secretion through the Up-regulation of the Free Fatty Acid Receptor GPR40 in Pancreatic β-Cells. PLoS One, 8(1), e50128. doi: 10.1371/journal.pone.0050128
    Kim, H.-S., Noh, J.-H., Hong, S.-H., Hwang, Y.-C., Yang, T.-Y., Lee, M.-S., Lee, M.-K. (2008). Rosiglitazone stimulates the release and synthesis of insulin by enhancing GLUT-2, glucokinase and BETA2/NeuroD expression. Biochemical and Biophysical Research Communications, 367(3), 623-629. doi: http://dx.doi.org/10.1016/j.bbrc.2007.12.192
    Kuhn, P. H., Wang, H., Dislich, B., Colombo, A., Zeitschel, U., Ellwart, J. W., Lichtenthaler, S. F. (2010). ADAM10 is the physiologically relevant, constitutive alpha-secretase of the amyloid precursor protein in primary neurons. The EMBO Journal, 29(17), 3020-3032. doi: 10.1038/emboj.2010.167
    Kurochkin, I. V., & Goto, S. (1994). Alzheimer's β-amyloid peptide specifically interacts with and is degraded by insulin degrading enzyme. FEBS Letters, 345(1), 33-37. doi: http://dx.doi.org/10.1016/0014-5793(94)00387-4
    Lambert, J.-C., Ibrahim-Verbaas, C. A., Harold, D., Naj, A. C., Sims, R., Bellenguez, C., Amouyel, P. (2013). Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet, 45(12), 1452-1458. doi: 10.1038/ng.2802
    Lazarczyk, M. J., Hof, P. R., Bouras, C., & Giannakopoulos, P. (2012). Preclinical Alzheimer disease: identification of cases at risk among cognitively intact older individuals. BMC Med, 10, 127. doi: 10.1186/1741-7015-10-127
    Li, X., Wang, A. P., Yan, X., Huang, G., Liu, B. L., & Zhou, Z. G. (2010). [Glitazones protects beta cell function from cytotoxic cytokines through PPAR gamma-dependent mechanisms]. Nan Fang Yi Ke Da Xue Xue Bao, 30(7), 1530-1533.
    Lichtenstein, A. H., & Schwab, U. S. (2000). Relationship of dietary fat to glucose metabolism. Atherosclerosis, 150(2), 227-243. doi: 10.1016/S0021-9150(99)00504-3
    Lichtenthaler, S. F., Haass, C., & Steiner, H. (2011). Regulated intramembrane proteolysis--lessons from amyloid precursor protein processing. J Neurochem, 117(5), 779-796. doi: 10.1111/j.1471-4159.2011.07248.x
    Ling, Y., Morgan, K., & Kalsheker, N. (2003). Amyloid precursor protein (APP) and the biology of proteolytic processing: relevance to Alzheimer’s disease. The International Journal of Biochemistry & Cell Biology, 35(11), 1505-1535. doi: http://dx.doi.org/10.1016/S1357-2725(03)00133-X
    Liu, L. P., Yan, T. H., Jiang, L. Y., Hu, W., Hu, M., Wang, C., Hong, H. (2013). Pioglitazone ameliorates memory deficits in streptozotocin-induced diabetic mice by reducing brain beta-amyloid through PPARgamma activation. Acta Pharmacol Sin, 34(4), 455-463. doi: 10.1038/aps.2013.11
    Liu, Y., Liu, F., Grundke-Iqbal, I., Iqbal, K., & Gong, C. X. (2009). Brain glucose transporters, O-GlcNAcylation and phosphorylation of tau in diabetes and Alzheimer's disease. J Neurochem, 111(1), 242-249. doi: 10.1111/j.1471-4159.2009.06320.x
    Liyong Wu, Pedro Rosa-Neto, Ging-Yuek R. Hsiung, A. Dessa Sadovnick, Mario Masellis, Sandra E. Black, Gauthier, S. (2012). Early-Onset Familial Alzheimer’s Disease(EOFAD). The Canadian Journal of Neurological Sciences, 39, 436-445.
    M, U. R., & Sultana, S. (2011). Attenuation of oxidative stress, inflammation and early markers of tumor promotion by caffeic acid in Fe-NTA exposed kidneys of Wistar rats. Mol Cell Biochem, 357(1-2), 115-124. doi: 10.1007/s11010-011-0881-7
    Manczak, M., Anekonda, T. S., Henson, E., Park, B. S., Quinn, J., & Reddy, P. H. (2006). Mitochondria are a direct site of Aβ accumulation in Alzheimer's disease neurons: implications for free radical generation and oxidative damage in disease progression. Human Molecular Genetics, 15(9), 1437-1449.
    Mandrekar-Colucci, S., Karlo, J. C., & Landreth, G. E. (2012). Mechanisms underlying the rapid peroxisome proliferator-activated receptor-gamma-mediated amyloid clearance and reversal of cognitive deficits in a murine model of Alzheimer's disease. J Neurosci, 32(30), 10117-10128. doi: 10.1523/JNEUROSCI.5268-11.2012
    Marcus, D., Strafaci, J., & Freedman, M. (2006). Differential neuronal expression of manganese superoxide dismutase in Alzheimer's Disease. Medical Science Monitor, 12.
    Massaad, C., & E., K. (2011). Reactive Oxygen Species in the Regulation of Synaptic Plasticity and Memory. Antioxidant &Redox Signaling, Volume 14.
    Mattson, M. P. (2004). Pathways towards and away from Alzheimer's disease. Nature, 430(7000), 631-639.
    McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, C. R., Jr., Kawas, C. H., Phelps, C. H. (2011). The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement, 7(3), 263-269. doi: 10.1016/j.jalz.2011.03.005
    Medeiros, R., Baglietto-Vargas, D., & LaFerla, F. M. (2011). The Role of Tau in Alzheimer's Disease and Related Disorders. CNS Neurosci Ther, 17(5), 514-524. doi: 10.1111/j.1755-5949.2010.00177.x
    Miklossy, J., Qing, H., Radenovic, A., Kis, A., Vileno, B., Làszló, F., McGeer, P. L. (2010). Beta amyloid and hyperphosphorylated tau deposits in the pancreas in type 2 diabetes. Neurobiol Aging, 31(9), 1503-1515. doi: http://dx.doi.org/10.1016/j.neurobiolaging.2008.08.019
    Nalivaeva, N. N., Belyaev, N. D., Zhuravin, I. A., & Turner, A. J. (2012). The Alzheimer's amyloid-degrading peptidase, neprilysin: can we control it? Int J Alzheimers Dis, 2012, 383796. doi: 10.1155/2012/383796
    Nitta, A., Fukuta, T., Hasegawa, T., & Nabeshima, T. (1997). Continuous Infusion of β-Amyloid Protein into the Rat Cerebral Ventricle Induces Learning Impairment and Neuronal and Morphological Degeneration. The Japanese Journal of Pharmacology, 73(1), 51-57.
    Nitta, A., Itoh, A., Hasegawa, T., & Nabeshima, T. (1994). beta-Amyloid protein-induced Alzheimer's disease animal model. Neurosci Lett, 170(1), 63-66.
    Noor Embi, D. B. R., and Philip Cohen. (1980). Glycogen Synthase Kinase-3 from Rabbit Skeletal Muscle. Eur J Biochem, 107, 519-527.
    Novaes, R. D., Goncalves, R. V., Peluzio Mdo, C., Natali, A. J., & Maldonado, I. R. (2012). 3,4-Dihydroxycinnamic acid attenuates the fatigue and improves exercise tolerance in rats. Biosci Biotechnol Biochem, 76(5), 1025-1027.
    Oboh, G., Agunloye, O. M., Akinyemi, A. J., Ademiluyi, A. O., & Adefegha, S. A. (2013). Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to Alzheimer's disease and some pro-oxidant induced oxidative stress in rats' brain-in vitro. Neurochem Res, 38(2), 413-419. doi: 10.1007/s11064-012-0935-6
    Okutan, H., Ozcelik, N., Yilmaz, H. R., & Uz, E. (2005). Effects of caffeic acid phenethyl ester on lipid peroxidation and antioxidant enzymes in diabetic rat heart. Clinical Biochemistry, 38(2), 191-196. doi: 10.1016/j.clinbiochem.2004.10.003
    Park, S. H., & Min, T. S. (2006). Caffeic acid phenethyl ester ameliorates changes in IGFs secretion and gene expression in streptozotocin-induced diabetic rats. Life Sci, 78(15), 1741-1747. doi: 10.1016/j.lfs.2005.08.011
    Pathan, A., Gaikwad, A., Viswanad, B., & Ramarao, P. (2008). Rosiglitazone attenuates the cognitive deficits induced by high fat diet feeding in rats. Eur J Pharmacol, 589(1–3), 176-179. doi: http://dx.doi.org/10.1016/j.ejphar.2008.06.016
    Pathan, A. R., Viswanad, B., Sonkusare, S. K., & Ramarao, P. (2006). Chronic administration of pioglitazone attenuates intracerebroventricular streptozotocin induced-memory impairment in rats. Life Sci, 79(23), 2209-2216. doi: 10.1016/j.lfs.2006.07.018
    Paulsson, J. F., & Westermark, G. T. (2005). Aberrant Processing of Human Proislet Amyloid Polypeptide Results in Increased Amyloid Formation. Diabetes, 54(7), 2117-2125. doi: 10.2337/diabetes.54.7.2117
    Pezet, S., & McMahon, S. B. (2006). NEUROTROPHINS: Mediators and Modulators of Pain. Annu Rev Neurosci, 29(1), 507-538. doi: 10.1146/annurev.neuro.29.051605.112929
    Pistell, P. J., Morrison, C. D., Gupta, S., Knight, A. G., Keller, J. N., Ingram, D. K., & Bruce-Keller, A. J. (2010). Cognitive impairment following high fat diet consumption is associated with brain inflammation. J Neuroimmunol, 219(1–2), 25-32. doi: http://dx.doi.org/10.1016/j.jneuroim.2009.11.010
    Poo, M.-m. (2001). Neurotrophins as synaptic modulators. Nat Rev Neurosci, 2(1), 24-32.
    Prasansuklab, A., & Tencomnao, T. (2013). Amyloidosis in Alzheimer's Disease: The Toxicity of Amyloid Beta (A beta ), Mechanisms of Its Accumulation and Implications of Medicinal Plants for Therapy. Evid Based Complement Alternat Med, 2013, 413808. doi: 10.1155/2013/413808
    Qatanani, M., & Lazar, M. A. (2007). Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes & Development, 21(12), 1443-1455. doi: 10.1101/gad.1550907
    Querfurth, H. W., & LaFerla, F. M. (2010). Alzheimer's Disease. New England Journal of Medicine, 362(4), 329-344. doi: 10.1056/NEJMra0909142
    Rasouli, N., Raue, U., Miles, L. M., Lu, T., Di Gregorio, G. B., Elbein, S. C., & Kern, P. A. (2005). Pioglitazone improves insulin sensitivity through reduction in muscle lipid and redistribution of lipid into adipose tissue. American Journal of Physiology - Endocrinology and Metabolism, 288(5), E930-E934.
    Reaven, G. M. (1988). Role of insulin resistance in human disease. Diabetes, 37(12), 1595-1607. doi: 10.2337/diab.37.12.1595
    Riccardi, G., Giacco, R., & Rivellese, A. A. (2004). Dietary fat, insulin sensitivity and the metabolic syndrome. Clin Nutr, 23(4), 447-456. doi: 10.1016/j.clnu.2004.02.006
    Rothwell, N., & Stock, M. (1984). The development of obesity in animals – the role of dietary factors. Clin Endocrinol Metab, 13(3), 437-449.
    Ryder, J., Su, Y., Liu, F., Li, B., Zhou, Y., & Ni, B. (2003). Divergent roles of GSK3 and CDK5 in APP processing. Biochem Biophys Res Commun, 312(4), 922-929.
    Sastre, M., Klockgether, T., & Heneka, M. T. (2006). Contribution of inflammatory processes to Alzheimer's disease: molecular mechanisms. International Journal of Developmental Neuroscience, 24(2–3), 167-176. doi: http://dx.doi.org/10.1016/j.ijdevneu.2005.11.014
    Schaeffer, E. L., Figueiro, M., & Gattaz, W. F. (2011). Insights into Alzheimer disease pathogenesis from studies in transgenic animal models. Clinics, 66, 45-54.
    Schernthaner, G., Currie, C. J., & Schernthaner, G. H. (2013). Do we still need pioglitazone for the treatment of type 2 diabetes? A risk-benefit critique in 2013. Diabetes Care, 36 Suppl 2, S155-161. doi: 10.2337/dcS13-2031
    Schindowski, K., Belarbi, K., & Buee, L. (2008). Neurotrophic factors in Alzheimer's disease: role of axonal transport. Genes Brain Behav, 7 Suppl 1, 43-56. doi: 10.1111/j.1601-183X.2007.00378.x
    Schwartz, S. S. (2010). Pioglitazone for the treatment of type 2 diabetes in patients inadequately controlled on insulin. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 3, 243–252. doi: http://dx.doi.org/10.2147/DMSO.S6742
    Searcy, J. L., Phelps, J. T., Pancani, T., Kadish, I., Popovic, J., Anderson, K. L., Thibault, O. (2012). Long-term pioglitazone treatment improves learning and attenuates pathological markers in a mouse model of Alzheimer's disease. J Alzheimers Dis, 30(4), 943-961. doi: 10.3233/JAD-2012-111661
    Shaimaa, N., Sandra, M., Mira, F., Laila, A., & Ibrahim, M. (2013). A histological and functional study on hippocampal formation of normal and diabetic rats. F1000 Research. doi: 10.12688/f1000research.2-151.v1)2
    Sheng, M., Sabatini, B. L., & Sudhof, T. C. (2012). Synapses and Alzheimer's disease. Cold Spring Harb Perspect Biol, 4(5). doi: 10.1101/cshperspect.a005777
    Small, D. H., Gasperini, R., Vincent, A. J., Hung, A. C., & Foa, L. (2009). The role of Abeta-induced calcium dysregulation in the pathogenesis of Alzheimer's disease. J Alzheimers Dis, 16(2), 225-233. doi: 10.3233/JAD-2009-0951
    Son, S. M., Song, H., Byun, J., Park, K. S., Jang, H. C., Park, Y. J., & Mook-Jung, I. (2012). Altered APP Processing in Insulin-Resistant Conditions Is Mediated by Autophagosome Accumulation via the Inhibition of Mammalian Target of Rapamycin Pathway. Diabetes, 61(12), 3126-3138. doi: 10.2337/db11-1735
    Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan, A. M., Phelps, C. H. (2011). Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement, 7(3), 280-292. doi: 10.1016/j.jalz.2011.03.003
    Steen, E., Terry, B. M., Rivera, E. J., Cannon, J. L., Neely, T. R., Tavares, R., de la Monte, S. M. (2005). Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease - is this type 3 diabetes? Journal of Alzheimer's Disease, 7(1), 63-80.
    Sundararajan, S., Jiang, Q., Heneka, M., & Landreth, G. (2006). PPARγ as a therapeutic target in central nervous system diseases. Neurochemistry International, 49(2), 136-144. doi: http://dx.doi.org/10.1016/j.neuint.2006.03.020
    Sze, C., Bi, H., Kleinschmidt-DeMasters, B., Filley, C., & Martin, L. (2000). Selective regional loss of exocytotic presynaptic vesicle proteins in Alzheimer’s disease brains. Journal of the Neurological Sciences, 175(2), 81-90. doi: http://dx.doi.org/10.1016/S0022-510X(00)00285-9
    Sze, C., Troncoso, J., Kawas, C., Mouton, P., Price, D., & Martin, L. (1997). Loss of the presynaptic vesicle protein synaptophysin in hippocampus correlates with cognitive decline in Alzheimer disease. J Neuropathol Exp Neurol, 56, 933-944.
    Tabaton, M., & Tamagno, E. (2007). The molecular link between beta- and gamma-secretase activity on the amyloid beta precursor protein. Cell Mol Life Sci, 64(17), 2211-2218. doi: 10.1007/s00018-007-7219-3
    Takeda, S., Sato, N., Rakugi, H., & Morishita, R. (2011). Molecular mechanisms linking diabetes mellitus and Alzheimer disease: beta-amyloid peptide, insulin signaling, and neuronal function. Mol Biosyst, 7(6), 1822-1827. doi: 10.1039/c0mb00302f
    Tapiero, H., Tew, K. D., Ba, G. N., & Mathe, G. (2002). Polyphenols: do they play a role in the prevention of human pathologies? Biomed Pharmacother, 56(4), 200-207.
    Tuppo, E. E., & Arias, H. R. (2005). The role of inflammation in Alzheimer's disease. The International Journal of Biochemistry & Cell Biology, 37(2), 289-305. doi: http://dx.doi.org/10.1016/j.biocel.2004.07.009
    Warwick, Z. S., & Schiffman, S. S. (1992). Role of Dietary Fat in Calorie Intake and Weight Gain. Neuroscience and Biobehavioral Reviews, 16(4), 585-596.
    Wen, Y., Planel, E., Herman, M., Figueroa, H. Y., Wang, L., Liu, L., Duff, K. E. (2008). Interplay between Cyclin-Dependent Kinase 5 and Glycogen Synthase Kinase 3β Mediated by Neuregulin Signaling Leads to Differential Effects on Tau Phosphorylation and Amyloid Precursor Protein Processing. The Journal of Neuroscience, 28(10), 2624-2632.
    Westermark, P. (2011). Amyloid in the islets of Langerhans: thoughts and some historical aspects. Ups J Med Sci, 116(2), 81-89. doi: 10.3109/03009734.2011.573884
    Woodgett, J. R. (1990). Molecular cloning and expression of glycogen synthase kinase-3/Factor A. The EMBO Journal, 9(8), 2431-2438.
    Zhang, F., Kang, Z., Li, W., Xiao, Z., & Zhou, X. (2012). Roles of brain-derived neurotrophic factor/tropomyosin-related kinase B (BDNF/TrkB) signalling in Alzheimer's disease. J Clin Neurosci, 19(7), 946-949. doi:10.1016/j.jocn.2011.12.022
    Zhang, Y.-w., Thompson, R., Zhang, H., & Xu, H. (2011). APP processing in Alzheimer's disease. Molecular Brain, 4(1), 3.
    Zhao, W. Q., & Townsend, M. (2009). Insulin resistance and amyloidogenesis as common molecular foundation for type 2 diabetes and Alzheimer's disease. Biochim Biophys Acta, 1792(5), 482-496. doi: 10.1016/j.bbadis.2008.10.014
    Zhou, W.-w., Lu, S., Su, Y.-j., Xue, D., Yu, X.-l., Wang, S.-w., Liu, R.-t. (2014). Decreasing oxidative stress and neuroinflammation with a multifunctional peptide rescues memory deficits in mice with Alzheimer disease. Free Radical Biology and Medicine, 74(0), 50-63. doi: http://dx.doi.org/10.1016/j.freeradbiomed.2014.06.013
    邱銘章、湯麗玉(2009)。失智症照護指南: 原水文化.
    施瑞雯(2012)。 蓮霧幼果分離物-Vescalagin與Gallic Acid對高果糖飼料誘導糖尿病前期大鼠之影響(碩士論文)。國立臺灣師範大學,台北市。
    郭柏伶(2013)。咖啡酸對高脂飼料誘導高胰島素血症大鼠海馬迴及皮質醣類代謝之研究 (碩士論文)。國立臺灣師範大學,台北市。
    陳甄雯(2013)。香草酸對餵食高脂飼料大鼠血糖與血脂之影響 (碩士論文)。國立台灣大學,台北市。
    黃大維(2010)。咖啡酸及肉桂酸減輕小鼠肝臟細胞(FL83B)胰島素阻抗及改善碳水化合物代謝之研究 (博士論文)。國立台灣大學,台北市。
    衛生福利部護理及健康照護司. (2013). 失智症防治照護政策網領.
    行政院經濟建設委員會. (2012). 「中華民國2012年至2060年人口推計」報告.

    QR CODE