研究生: |
蔡培元 Tsai, Pei-Yuan |
---|---|
論文名稱: |
紅熒烯中介層對Co2Ni/矽(100)薄膜磁特性、結構之影響 The inflence of rubrene interlayer on the magnetic properties and structure of Co2Ni/Si(100) films |
指導教授: |
蔡志申
Tsay, Jyh-Shen 陳育霖 Chen, Yu-Lim |
口試委員: |
蔡志申
Tsay, Jyh-Shen 陳育霖 Chen, Yu-Lim 楊仲準 Yang, Chun-Chuen 蔡佳霖 Tsai, Jai-Lin |
口試日期: | 2025/01/10 |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 紅熒烯 、鈷 、鎳 、合金 、鐵磁性 |
英文關鍵詞: | rubrene, cobalt, nickel, alloy, ferromagnetism |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202500232 |
論文種類: | 學術論文 |
相關次數: | 點閱:55 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有機半導體以其獨特的應用潛力和製造優勢,激發了學界對其大規模研究的熱情,被廣泛認為是下一代半導體技術的關鍵。紅熒烯是一種具有高載流子遷移率和優異光電性能的有機半導體材料,廣泛應用於場效應電晶體(field-effect transistor, FET)、有機光電元件和有機發光二極體(organic light-emitting diodes, OLED)等領域。鈷鎳合金因其在磁性材料中的優越性,如低矯頑力和可調的磁異向性,成為廣泛研究和應用的重要對象,這些合金的性質可以透過調整鈷和鎳的比例來優化。本研究深入探討了Co2Ni薄膜在矽基板和紅熒烯界面上的磁特性及結構。包括利用磁光科爾效應、科爾顯微鏡和鐵磁共振技術來觀察磁特性的變化,以及原子力顯微鏡、X光繞射、X光反射率和X光光電子能譜來分析薄膜的表面形貌、晶體結構、界面粗糙度和化學組成。研究結果表明,Co2Ni /矽(100)系統矯頑力沒有超過50 Oe,隨著紅熒烯的引入,Co2Ni薄膜矯頑力上升、改變磁域尺寸大小和表面形貌更加蜿蜒,以及提升表面粗糙度。 Co2Ni薄膜成長顯示薄膜呈現fcc結構(111)方向奈米晶生長,晶粒大小為幾個奈米,而Co2Ni薄膜深度分析確認了薄膜中鈷與鎳的均勻成分成長。紅熒烯引入導致電子能階偏移約為0.1 eV,顯示對紅熒烯中介層對於鐵磁層電子結構有顯著影響。紅熒烯中介層效應對磁性合金薄膜成長應用的潛在意義,特別是在提高矯頑力、方正度以及改變磁域結構對於合金鐵磁性薄膜製程有重要角色。
Organic semiconductors, known for their unique application potential and manufacturing advantages, have sparked considerable interest in academia and are widely regarded as key components of next-generation semiconductor technology. Rubrene, an organic semiconductor material with high carrier mobility and excellent optoelectronic properties, is extensively used in applications such as field-effect transistors (FET), organic photovoltaic devices, and organic light-emitting diodes (OLED). Cobalt-nickel alloys, valued in magnetic materials for their advantages such as low coercivity and tunable magnetic anisotropy, have been the focus of research and applications, with their properties optimized by adjusting the cobalt-to-nickel ratio.This study explores the magnetic properties and structure of Co₂Ni films at the silicon substrate and rubrene interface. Techniques including magneto-optical Kerr effect(MOKE), Kerr microscopy(KM), and ferromagnetic resonance were used to observe changes in magnetic properties, while atomic force microscopy, x-ray diffraction, x-ray reflectivity, and x-ray photoelectron spectroscopy were employed to analyze surface morphology, crystal structure, interface roughness, and chemical composition. The results show that the coercivity of the Co₂Ni/Si(100) system remains below 50 Oe. With the introduction of rubrene, the coercivity of the Co₂Ni film increases, the magnetic domain size changes, the surface morphology becomes more undulating, and the surface roughness is enhanced. The growth of Co₂Ni films indicates polycrystalline growth with a preference for the (111) orientation of the face-centered cubic (fcc) structure, with grain sizes of a few nanometers. Depth analysis confirmed a uniform distribution of cobalt and nickel within the film. The introduction of rubrene causes an energy level shift of approximately 0.1 eV, highlighting a significant influence of the rubrene interlayer on the electronic structure of the ferromagnetic layer. The effects of the rubrene interlayer hold potential implications for the growth of magnetic alloy films, particularly in enhancing coercivity, squareness, and modifying magnetic domain structures, which play a crucial role in the processing of ferromagnetic alloy thin films.
[1] Y. Kitamura, E. Shikoh, S. Zulkarnaen Bisri, et al. Electrical investigation of the interface band structure in rubrene single-crystal/nickel junction. Applied Physics Letters 99 (2011).
[2] Y.-J. Hou, C.-K. Yang, C.-Y. Hsu, et al. Structural determination and magnetic properties for Co–rubrene composite films on Si (1 0 0). Applied Surface Science 354, 139-143 (2015).
[3] V.A. Dediu, L.E. Hueso, I. Bergenti, et al. Spin routes in organic semiconductors. Nature materials 8, 707-716 (2009).
[4] Y.-L. Chan, Y.-J. Hung, C.-H. Wang, et al. Magnetic response of an ultrathin cobalt film in contact with an organic pentacene layer. Physical review letters 104, 177204 (2010).
[5] D. Wei, Y.-L. Chan, Y.-J. Hung, et al. Magnetic disparities at the interfaces of Co–pentacene–Co hybrid structures. Synthetic metals 161, 581-585 (2011).
[6] Y. Kitamura, E. Shikoh, K. Sawabe, et al. Realization of ohmic-like contact between ferromagnet and rubrene single crystal. Applied Physics Letters 101 (2012).
[7] R. De Boer, M. Gershenson, A. Morpurgo, et al. Organic single‐crystal field‐effect transistors. physica status solidi (a) 201, 1302-1331 (2004).
[8] M.N. Baibich, J.M. Broto, A. Fert, et al. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Physical Review Letters 61, 2472-2475 (1988).
[9] J.-W. Yoo, H. Jang, V. Prigodin, et al. Giant magnetoresistance in ferromagnet/organic semiconductor/ferromagnet heterojunctions. Physical Review B—Condensed Matter and Materials Physics 80, 205207 (2009).
[10] A. Hubert,R. Schäfer, Magnetic domains: the analysis of magnetic microstructures. Springer Science & Business Media (2008).
[11] 李乃平, 微電子器件工藝. 23, 華中理工大學出版社, 武漢市 (1995).
[12] K. Kobashi, Diamond films: chemical vapor deposition for oriented and heteroepitaxial growth. Elsevier (2010).
[13] N.N. Greenwood,A. Earnshaw, Chemistry of the Elements. Elsevier (2012).
[14] H. Bandal, A. Jadhav,H. Kim. Cobalt impregnated magnetite-multiwalled carbon nanotube nanocomposite as magnetically separable efficient catalyst for hydrogen generation by NaBH4 hydrolysis. Journal of Alloys and Compounds 699, 1057-1067 (2017).
[15] T. Nishizawa,K. Ishida. The Co− Ni (cobalt-nickel) system. Bulletin of alloy phase diagrams 4, 390-395 (1983).
[16] 赵. 雷, 王. 辉, 杨丽霞, 等. Fe-Co-Ni系组合合金热等静压高通量制备方法初探. 金属学报 57 (2021).
[17] M. Mohanta, S. Parida, A. Sahoo, et al. Structural and magnetic properties of CoNi surface alloys. Physica B: Condensed Matter 572, 105-108 (2019).
[18] R.S. Muller, T.I. Kamins,M. Chan, 羅正忠,龔正 (譯), 半導體元件物理:與其在積體電路上的應用第三版. 歐亞書局有限公司, 新北市 (2007).
[19] W. Taylor. X-ray measurements on diflavylene, rubrene, and related compounds. Zeitschrift für Kristallographie-Crystalline Materials 93, 151-155 (1936).
[20] S. Akopyan,R. Avoyan. Yu. T. Struchkov in. Zh. Strukt. Khim 3, 602 (1962).
[21] D. Henn, W. Williams,D. Gibbons. Crystallographic data for an orthorhombic form of rubrene. Journal of Applied Crystallography 4, 256-256 (1971).
[22] O.D. Jurchescu. Molecular organic semiconductors for electronic devices. (2006).
[23] M. Nothaft,J. Pflaum. Thermally and seed‐layer induced crystallization in rubrene thin films. physica status solidi (b) 245, 788-792 (2008).
[24] Y.-W. Jhou, C.-H.-T. Chang, S.-Y. Sie, et al. Comparisons of magnetic defects and coercive forces for Co/Si(100) and Co/rubrene/Si(100). Physical Chemistry Chemical Physics 22, 14900-14909 (2020).
[25] R.G. Tanguturi, J.-C. Tsai, Y.-S. Li, et al. Structural characterization and electronic properties of Ni/rubrene bilayers with alternative stacking sequences. Physical Chemistry Chemical Physics 25, 7927-7936 (2023).
[26] S. Cong, H. Yang, Y. Lou, et al. Organic small molecule as the underlayer toward high performance planar perovskite solar cells. ACS Applied Materials & Interfaces 9, 2295-2300 (2017).
[27] 田民波,顏怡文, 薄膜技術與薄膜材料. 五南書局出版公司, 臺北市 (2012).
[28] D.L. Smith,D.W. Hoffman. (American Institute of Physics, 1996).
[29] J.A.C. Bland,B. Heinrich. Magnetic anisotropy, magnetization and band structure. Ultrathin Magnetic Structures I: An Introduction to the Electronic, Magnetic and Structural Properties, 21-90 (1994).
[30] C. Kittel. Introduction to solid state physics.(7thedn), john willey and sons inc. New York, 308 (1996).
[31] D. Jiles, Hard Magnetic Materials, in Introduction to Magnetism and Magnetic Materials. 1991, Springer. p. 299-321.
[32] Y.-E. Wu, J.-S. Tsay, S.-C. Chen, et al. Magnetic properties of Co/Si (100) thin films studied using magnetooptic Kerr effect technique. Japanese journal of applied physics 40, 6825 (2001).
[33] J.D. Jackson, Classical electrodynamics. 3 ed. 352, John Wiley & Sons (1999).
[34] 蔡志申. 物理雙月刊(廿五卷五期) 605 台灣物理學會, 臺北市, (2003).
[35] M. Heigl, R. Wendler, S.D. Haugg, et al. Magnetic properties of Co/Ni-based multilayers with Pd and Pt insertion layers. Journal of Applied Physics 127, 233902 (2020).
[36] Y. Murayama. Micromagnetics on stripe domain films. I. Critical cases. Journal of the Physical Society of Japan 21, 2253-2266 (1966).
[37] 江培成, 鈷,鐵與紅熒烯在銥(111)上的表面結構與磁性研究, 物理學系. 2017, 國立臺灣師範大學: 台北市.
[38] S. Ghosh, R.G. Tanguturi, P. Pramanik, et al. Low-temperature anomalous spin correlations and Kondo effect in ferromagnetic SrRuO 3/LaNiO 3/La 0.7 Sr 0.3 MnO 3 trilayers. Physical Review B 99 (2019).
[39] 許智瑜, 紅熒烯/鈷雙層結構在矽(100)上的結構與磁性研究, 物理學系. 2011, 國立臺灣師範大學: 台北市.
[40] 蘇青森, 真空技術精華. 五南書局出版公司, 臺北市 (2009).
[41] 陳建人, 真空技術與應用. 行政院國家科學委員會精密儀器發展中心, 新竹市 (1994).
[42] 李世鴻, 積體電路製程技術. 156, 五南書局出版公司, 臺北市 (1998).
[43] Z.Q. Qiu,S.D. Bader. Surface magneto-optic Kerr effect. Review of Scientific Instruments 71, 1243-1255 (2000).
[44] A. Hubert, R. Schäfer, A. Hubert, et al. Domain theory. Magnetic Domains: The Analysis of Magnetic Microstructures, 99-335 (1998).
[45] Z. Qiu, J. Pearson,S. Bader. Additivity of the magneto-optic Kerr signal in ultrathin Fe (110)/Ag (111) superlattices. Physical Review B 45, 7211 (1992).
[46] 謝祥予, 鐵在紅熒烯/矽(100)上磁性與結構之研究, 物理學系. 2018, 國立臺灣師範大學: 台北市.
[47] D.R. Lide, CRC handbook of chemistry and physics. Vol. 85. p., CRC press (2004).
[48] A. Geiler, H. Marvin, M. Zartarian, et al. Magneto-Optical Kerr Effect Microscope. (2006).
[49] G. Binnig, C.F. Quate,C. Gerber. Atomic force microscope. Physical review letters 56, 930 (1986).
[50] F.J. Giessibl. Advances in atomic force microscopy. Reviews of Modern Physics 75, 949-983 (2003).
[51] J.C. Vickerman,I.S. Gilmore, Surface analysis: the principal techniques. John Wiley & Sons (2011).
[52] 李伯奎, 三维粗糙度参数算术平均偏差与均方根偏差的规律研究. 2008.
[53] J.R. Fermin. FERROMAGNETIC RESONANCE.
[54] S. Mizukami, Y. Ando,T. Miyazaki. Effect of spin diffusion on Gilbert damping for a very thin permalloy layer in Cu/permalloy/Cu/Pt films. Physical Review B 66, 104413 (2002).
[55] S.M.S. Mizukami, Y.A.Y. Ando,T.M.T. Miyazaki. The study on ferromagnetic resonance linewidth for NM/80NiFe/NM (NM= Cu, Ta, Pd and Pt) films. Japanese journal of applied physics 40, 580 (2001).
[56] K. Cole,B.S. Levine, Ultraviolet-Visible Spectrophotometry. 2020, Springer International Publishing. p. 127-134.
[57] D.A. Skoog, F.J. Holler,S.R. Crouch, Instrumental analysis. Vol. 47. p., Brooks/Cole, Cengage Learning Belmont (2007).
[58] W.E. Vargas,G.A. Niklasson. Applicability conditions of the Kubelka–Munk theory. Applied optics 36, 5580-5586 (1997).
[59] 管理者:鄧敦平. UV/VIS/NIR Spectrometer. 2019, 國立臺灣師範大學微奈米元件檢測研究中心. https://mndirc.cot.ntnu.edu.tw/device_info.php?SN=10.
[60] D. Halliday, R. Resnick,J. Walker, 呂正中, 周榮芳, 莫定山 (譯), 普通物理學(精華版). 歐亞書局有限公司, 新北市 (2011).
[61] P. Scherrer. Bestimmung der Grosse und inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen. Nach Ges Wiss Gottingen 2, 8-100 (1918).
[62] C.-H.-T. Chang, S.-C. Chang, J.-S. Tsay, et al. Enhanced exchange bias fields for CoO/Co bilayers: influence of antiferromagnetic grains and mechanisms. Applied Surface Science 405, 316-320 (2017).
[63] 管理者:吳宗明,陳二強. 高解析X光繞射儀 貴重儀器中心 國立中興大學. https://research.nchu.edu.tw/unit-news-detail/id/63/unit/9/mid/83#HR-XRD.
[64] N.I.o.S.a. Technology. NIST Center for Neutron Research - Neutron Activation Analysis. 2025 https://www.ncnr.nist.gov/resources/activation/.
[65] M. Björck,A. Glavic. Simple Reflectivity Model (XRR/NR). 2020 https://aglavic.github.io/genx/doc/tutorials/simple_reflectivity.html.
[66] R. Shankar, Principles of quantum mechanics. Springer Science & Business Media (2012).
[67] G. Ertl,J. Küppers. Low Energy Electrons and Surface Chemistry VCH. Deerfield Beach, FL, 227 (1985).
[68] 管理者:陳志銘,劉恒睿,蔡和廷. 化學分析電子能譜儀. 貴重儀器中心
國立中興大學. http://research.nchu.edu.tw/unit-news-detail/id/63/unit/9/mid/83#esca.
[69] 管理者:王立民,陳壹男. 超導量子干涉磁量儀. 國立台灣大學. https://www.hic.ch.ntu.edu.tw/SQUID/squid.html.
[70] Y. Jia, X. Gao, C. Teng, et al. Co2Ni alloy/N-doped CNTs composite as efficient hydrogen evolution reaction catalyst in alkaline medium. Journal of Alloys and Compounds 791, 779-785 (2019).
[71] N. Banu, S. Singh, B. Satpati, et al. Evidence of Formation of Superdense Nonmagnetic Cobalt. Scientific Reports 7, 41856 (2017).
[72] R.G. Tanguturi, J.-C. Tsai, Y.-S. Li, et al. Impact of a rubrene buffer layer on the dynamic magnetic behavior of nickel layers on Si (100). Physical Chemistry Chemical Physics 25, 32029-32039 (2023).
[73] T.A. Nguyen, J. Fedotova, J. Kasiuk, et al. Effect of flattened surface morphology of anodized aluminum oxide templates on the magnetic properties of nanoporous Co/Pt and Co/Pd thin multilayered films. Applied Surface Science 427, 649-655 (2018).
[74] D. Li, R. Ma, B. Cui, et al. Effect of the oxide layer on the interfacial Dyzaloshinskii-Moriya interaction in perpendicularly magnetized Pt/Co/SmOx and Pt/Co/AlOx heterostructures. Applied Surface Science 513, 145768 (2020).
[75] N. Liu, P. Du, P. Zhou, et al. Annealing temperature effects on the cation distribution in CoFe2O4 nanofibers. Applied Surface Science 532, 147440 (2020).
[76] A.P. Grosvenor, M.C. Biesinger, R.S.C. Smart, et al. New interpretations of XPS spectra of nickel metal and oxides. Surface science 600, 1771-1779 (2006).
[77] R.C. O'handley, Modern magnetic materials: principles and applications. (1999).
[78] 李有庠, 紅熒烯對鎳/矽(100)系統磁性與結構的影響之研究, 物理學系. 2021, 國立臺灣師範大學: 台北市.
[79] 侯詠智, 紅熒烯與鈷在矽(100)上形成複合材料的結構與磁性研究, 物理學系. 2013, 國立臺灣師範大學: 台北市.
[80] W. Lv, H. Xue, J. Cai, et al. Enhancement of spin–orbit torque in WTe2/perpendicular magnetic anisotropy heterostructures. Applied Physics Letters 118, 052406 (2021).
[81] C. Eyrich, A. Zamani, W. Huttema, et al. Effects of substitution on the exchange stiffness and magnetization of Co films. Physical Review B 90, 235408 (2014).
[82] J.M.L. Beaujour, W. Chen, K. Krycka, et al. Ferromagnetic resonance study of sputtered Co|Ni multilayers. The European Physical Journal B 59, 475-483 (2007).
[83] M. Haertinger, C. Back, S.-H. Yang, et al. Properties of Ni/Co multilayers as a function of the number of multilayer repetitions. Journal of Physics D: Applied Physics 46, 175001 (2013).
[84] E. Szewczaka, J. Paszula, A. Leonov, et al. Explosive consolidation of mechanically alloyed Ti-Al alloys. Materials Science and Engineering: A 226, 115-118 (1997).
[85] 王楠, 荆天辅, 乔桂英, 等. 添加剂对喷射电沉积纳米晶Co-Ni合金的影响. 电镀与环保 (2006).