研究生: |
高子恩 Kao, Tzu-En |
---|---|
論文名稱: |
宜蘭紅柴林地區現地應力與導水裂隙關係之研究 Study of Relationship Between In-Situ Stress and Fluid Conduits in Hongchailin of Ilan, NE Taiwan |
指導教授: |
葉恩肇
Yeh, En-Chao |
學位類別: |
碩士 Master |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 109 |
中文關鍵詞: | 加強型工程地熱 、現地應力 、岩心中視構造分析 、宜蘭 |
英文關鍵詞: | Enhance Geothermal System |
DOI URL: | https://doi.org/10.6345/NTNU202204169 |
論文種類: | 學術論文 |
相關次數: | 點閱:172 下載:23 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臺灣東北部宜蘭平原歷經造山擠壓與弧後張裂的影響,有較高的地溫梯度,因而產生豐富的地熱資源。透過現地應力場評估可以瞭解現今應力狀態,有助於地熱資源探開與開發,同時也對地熱鑽井工程提供重要資訊。導水裂隙發育與現地應力有密不可分的關係,為了使地熱發電達到最高產能。本研究利用非彈性應變回復法(Anelastic Strain Recovery )評估現地應力狀態進,而瞭解三維應力方向與大小,同時也對結元井200米岩心與養鴨場150米岩心進行岩心中視構造分析,詳細觀察並測量記錄岩心中各個地質構造的特徵與位態,探討地質構造於地底下的分布狀況。最後整合應力場評估與岩心中視構造分析結果,探討其地下構造與應力之關係。
研究結果指出ASR實驗明顯單純受到板劈理異向性的影響,推測岩心板劈理中水分的逸散會使岩心體積收縮,ASR紀錄並非現地應力釋放所產生之應變。岩心中視構造分析結果指出,結元井底下板劈理構造發達,因此大多數非充填裂隙與斷層泥主要順著板劈理面發育,而開口充填裂隙具有平行板劈理及垂直板劈理兩個群集。養鴨場井中開口充填裂隙亦具有兩群集分佈,與結元井不同的是,養鴨場井岩心有急折帶的產生。斷層擦痕反演指出,結元井過去曾有南-北方向拉張之正斷層應力場,以及南-北擠壓之逆斷層應力場。為了探現地應力與導水裂隙之關係,本研究利用DCDA、應力多邊形及斷層擦痕反演提供現地應力大小及方向,並透過3D-stress分析不同情境下開口充填裂隙成為導水裂隙之潛能。結元井與養鴨場開口充填裂隙屬於高擴張趨勢之開口充填裂隙,意味著現地應力具有高潛能使結元井與養鴨場井中切過劈理之開口充填裂隙成為導水裂隙。
綜合上述成果,斷層擦痕結果中逆斷層可能與早期板劈理同時形成;蘭陽平原正斷層應力場可能為沖繩海槽向西南延伸至之後所致,將應力場由南-北方向擠壓之逆斷層應力場轉變為南-北向拉張正斷層應力場;應力演化推測為早期劈理之逆斷層應力場演變至現今正斷層與走向滑移斷層應力場混合帶。
Ilan plan in northeastern Taiwan possesses abundant geothermal resources resulted from a higher geothermal gradient due to the influences of compression of mountain building and extension of back-arc rifting. Understanding in-situ stress field can evaluate current stress state for benefiting geothermal exploration and development and providing important information to geothermal engineering. Because development of geothermal fluid conduits is highly depended on in-situ stress, for enhancing geothermal productivity, this study conducted Anelastic Strain Recovery (ASR) to evaluate direction and magnitude of in-situ stress. Simultaneously, core description and investigated structure characteristic in JY-01 and 102-01 wells. At last, integrate in-situ stress and core description to figure out relation of in-situ stress and underground structure.
Based on results of ASR experiment, samples were affected by slaty cleavage.We speculate shrinkage of core due to dry out of core water escape from core that induce core volume shrink. Core descriptions indicate slaty cleavage were well development in JY-01. Therefore, most fracture and gouge were along slaty cleavage to develop. And open-filling fractures across and parallel to slaty cleavage in JY-01 well. Well 102-01 havs two open-filling groups, and well 102-01 also has kink structure. According to stress inversion of fault slip, there reverse and normal faulting stress states in JY-01. We exploit DCDA, stress polygon and slickenside inversion to provide direction and magnitude of in-situ stress, Then, 3D-stress analysis potential of slip and dilation tendency of open filling become fluid conduits in different stress regime. Open- filling fractures high dilation tendency in JY-01 and 102-01. This result signify that in-situ stress has high potential to make fracture perpendicular to slaty cleavage becoming fluid conduits.
In summary, we speculate reverse faulting and early stage slaty cleavage were develop in same time. Okinawa trough elongate to S-W induce normal faulting stress regime in Ilan plain that induce S-N reverse faulting stress state turn into S-N normal faulting stress state. We speculate earlier reverse faulting evolution to normal and strike-slip faulting stress state.
Anderson, E. M., 1905, The dynamics of faulting: Transactions of the Edinburgh Geological Society, v. 8, no. 3, p. 387-402.
Angelier, J., 1986, Preface to the special issue on “Geodynamics of the Eurasian-Philippine Sea Plate Boundary”: Tectonophysics, 125, IX-X.
Bott, M. H. P., 1959, The mechanics of oblique slip faulting: Geological Magazine, v. 96, no. 02, p. 109-117.
Byerlee, J. D., 1978, Friction of rocks, Pure and Applied Geophysics, v.106, p. 615-629.
Huang, H.-H., Shyu, J. B. H., Wu, Y.-M., Chang, C.-H., and Chen, Y.-G., 2012, Seismotectonics of northeastern Taiwan: Kinematics of the transition from waning collision to subduction and postcollisional extension: Journal of Geophysical Research: Solid Earth, v. 117, B01313.
Kang, C.-C., Chang, C.-P., Siame, L., and Lee, J.-C., 2015, Present-day surface deformation and tectonic insights of the extensional Ilan Plain, NE Taiwan: Journal of Asian Earth Sciences, v. 105, p. 408-417.
Lin, W., Yeh, E.-C., Ito, H., Hirono, T., Soh, W., Wang, C.-y., Ma, K.-F., Hung, J.-H., and Song, S.-r., 2007, Preliminary results of stress measurement using drill cores of TCDP Hole-A: an application of anelastic strain recovery method to three-dimensional in-situ stress determination: Terrestrial Atmospheric and Oceanic Sciences, v. 18, no. 2, p. 379.
Matsuki, K., 1991, Three-dimensional in-situ stress measurement with anelastic strain recovery of a rock core: 7th ISRM Congress, p. 557-560.
Matsuki, K., 2008, Anelastic strain recovery compliance of rocks and its application to in situ stress measurement: International Journal of Rock Mechanics and Mining Sciences, v. 45, no. 6, p. 952-965.
Teng, L. S., 1990, Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan: Tectonophysics, v. 183, no. 1, p. 57-76.
Teng, L. S., 1996, Extensional collapse of the northern Taiwan mountain belt: Geology, v. 24, no. 10, p. 949-952.
Tester, J. W., Anderson, B. J., Batchelor, A., Blackwell, D., DiPippo, R., Drake, E., Garnish, J., Livesay, B., Moore, M., and Nichols, K., 2006, The future of geothermal energy: Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century, Massachusetts Institute of Technology, Cambridge, MA, p. 372.
Tong, L.-T., Ouyang, S., Guo, T.-R., Lee, C.-R., Hu, K.-H., Lee, C.-L., and Wang, C.-J., 2008, Insight into the Geothermal Structure in Chingshui, Ilan, Taiwan: Terrestrial, Atmospheric & Oceanic Sciences, v. 19, no. 4, p. 413-424.
Voight, B., 1968, Determination of the virgin state of stress in the vicinity of a borehole from measurements of a partial inelastic strain tensor in drill cores: Rock Mechanics & Engineering Geology, v. 6/4, p. 201-215.
Wallace, R. E., 1951, Geometry of shearing stress and relation to faulting: The journal of Geology, p. 118-130.
Wiprut, D., & Zoback, M. D., 2001, Stress, borehole stability, and hydrocarbon leakage in the northern North Sea.
Yeh, Y., Lin, C.-H., and Roecker, S. W., 1989, A study of upper crustal structures beneath northeastern Taiwan: possible evidence of the western extension of Okinawa trough: Proceedings of the Geological Society of China, v. 32, p.139.
Yu, S., and Tsai, Y., 1979, Geomagnetic anomalies of the Ilan plain, Taiwan: Petrol. Geol. Taiwan, v. 16, p. 19-27.
Yu, S.-B., Chen, H.-Y., and Kuo, L.-C., 1997, Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274, 41-59.
Žalohar, J., and Vrabec, M., 2007, Paleostress analysis of heterogeneous fault-slip data: the Gauss method: Journal of Structural Geology, v. 29, no. 11, p. 1798-1810.
Zhang, Y.-J., Li, Z.-W., Yu, Z.-W., Guo, L.-L., Jin, X.-P., and Xu, T.-F., 2015, Evaluation of developing an enhanced geothermal heating system in northeast China: Field hydraulic stimulation and heat production forecast: Energy and Buildings, v. 88, p. 1-14.
Zoback, M. D., 2007, Reservoir Geomechanics. New York: Cambridge university press.
李偉誠,2015,利用非彈性應變回復法評估花蓮和平地區與彰濱工業區之現地應力場:國立臺灣師範大學地球科學研究所碩士論文,共102頁。
林啟文、林偉雄,1995,三星地質圖幅及說明書,五萬分之一地質圖幅第十五號:經濟部中央地質調查所,共56頁。
林啟文、高銘健,1997,蘇澳地質圖幅及說明書,五萬分之一地質圖幅第十六號:經濟部中央地質調查所,共47頁。
邱詠恬,2008,利用GPS觀測資料探討宜蘭平原之現今地殼變形:國立臺灣大學理學院地質科學研究所碩士論文,共90頁。
孫天祥,2014,台灣宜蘭清水地熱區之應力狀態研究:國立臺灣師範大學地球科學研究所碩士論文,共66頁。
黃家齊,2015,利用反射震測探討宜蘭三星紅柴林地熱地下構造:國立中央大學地球科學學系碩士論文,共88頁。
葉恩肇,洪日豪,王泰典,2015,宜蘭平原及鄰近地區孔內地球物理井測及導水裂隙與現地應力力學關係之研究,第二期能源國家型科技計畫地熱及天然氣水合物主軸中心103年地熱分向成果發表會。
鄧屬予,2002,台灣新生代大地構造:台灣的大地構造。中國地質學會出版,第49-93頁
鄧屬予,2007,台灣第四紀大地構造:經濟部中央地質調查所特刊,第十八號,共24頁。
鄧屬予、宋聖榮、葉恩肇、林殿順、劉佳玫、蔡宜玲,2013,從大地構造看台灣地質潛能:西太平洋地質科學,第13期,第2-38頁。
顏建忠,1998,極深覆岩下隧道之岩石力學問題:國立交通大學土木工程學系碩士論文,共144頁。