研究生: |
張育瑞 Zhang, Yu-Rui |
---|---|
論文名稱: |
虛擬實境教學應用對高中生工程設計表現之影響 The Influence of Virtual Reality Teaching Application on Engineerung Design Performance of High School Students |
指導教授: |
張玉山
Chang, Yu-Shan |
學位類別: |
碩士 Master |
系所名稱: |
科技應用與人力資源發展學系 Department of Technology Application and Human Resource Development |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 122 |
中文關鍵詞: | 虛擬實境 、工程設計表現 、虛擬實境教育 |
英文關鍵詞: | virtual reality, engineering design performance, virtual reality education |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DTAHRD.022.2018.F06 |
論文種類: | 學術論文 |
相關次數: | 點閱:295 下載:6 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討虛擬實境教學對高中生工程設計表現的影響。本研究為準實驗研究,採用不等組前後測實驗設計,對象為台北市某高中高中二年級的六個班級,隨機分派為實驗組及控制組,進行教學實驗。本研究以避障自走車作為教學實驗的單元,在實驗組進行虛擬實境教學;控制組進行一般生活科技教學。本研究蒐集課程活動前的工程設計表現量表成績作為前測分數,課程活動後的工程設計表現量表成績做為後測分數,並進行量化分析。
本研究的主要結論如下:1.虛擬實境教學對工程設計能力之「最佳化」能力有正向影響。2.虛擬實境教學對工程設計之「限制」「預測分析」能力無顯著正向影響。3.虛擬實境教學對工程設計歷程之「實踐」有正向影響。4.虛擬實境教學對工程設計歷程之「確認需求」、「蒐集資料」、「產生想法」、「評估」、「定義問題」、「可行性分析」無顯著正向影響。最後,本研究根據研究結果,針對虛擬實境在高中端的教學以及後續研究,提出建議
The purpose of this study was to investigate the effect of virtual reality teaching on the engineering design performance of high school students. A nonequivalent pretest-posttest quasi-experimental design was used in this research. The objects were six classes in a second year of a high school in Taipei City, randomly allocated into the experimental group and the control group. The researcher developed the teaching activity, which was named the obstacle avoidance self-propelled vehicle. The experimental group was taught with virtual reality instruction, and the control group was taught with the traditional instruction. Scores of engineering design scale were collected before and after the teaching experiment. Quantitative analysis were employed in this research.
The main results of this research were as follows: 1. Virtual reality teaching had a positive effect on student’s "optimization" ability of engineering design abilities. 2. Virtual reality teaching had no significant effect on student’s "constraints" and "predictive analysis" abilities of engineering design. 3. Virtual reality teaching had a positive effect on student’s “working” abilities. 4.Virtual reality teaching had no significant effect on student’s “hypotheses confirming”, “information gathering”, “ideas generating”, “evaluating”, “problem defining” and “feasibility analysis” abilities. Finally, recommendations and suggestions were addressed for implementation of virtual reality teaching and future studies based on results of this research.
一、中文部分
王成軍、沈豫浙(2010)。開展機器人教育,培養創新能力。中國地質教育,1,109-111
朱經明 (1999)。多媒體與身心障礙兒童。特殊教育季刊,72,13-15。
李隆盛、吳正己、游光昭、周麗瑞、葉家棟、盧秋珍、沈章平(2013)。十二年國民基本教育生活與科技領域綱要內容之前導研究。國家教育研究院「十二年國民基本教育領域綱要內容前導研究」整合型研究報告(編號 : NAER-102-06-A-1-02-09-1-18),未出版。
周家卉(2008)。實作評量在生活科技課程實施之探討。生活科技教育月刊,41(7),51-83。
林志勇、黃維信、宋文旭、許峻嘉 (2005)。認識虛擬實境。台灣:全華。
林怡君、陳冠佑、張書飄、翁偉玲、李孟娟、林俐君、唐克源 (2012)。互動式虛擬實境 3D 遊戲-以行動裝置結合為例。資訊傳播學報,2012,142-149。
姚經政(2017)。 機器人教學對高中生工程設計表現影響之研究(未出版之碩士論文)。國立臺灣師範大學,臺北市。
胡名霞 (2006)。動作控制與動作學習(第二版)。台北市:金名圖書有限公司。
張永康、盧玉玲(2009)。培育教師具機器人教學能力知影響因素。國民教育,50(1), 64-75。
張玉山、楊雅茹(2014)。STEM 教學設計之探討:以液壓手臂單元為例。科技與人力教育季刊,1(1),2-17。
教育部 (2016)。 2016 虛擬實境元年「VR 行動體驗車」開進校園。2016/12/6 下載自http://www.ey.gov.tw/UnitRSS_Content.aspx?n=8092BD84714005C0&s=97160A045A0C9F54
梁朝雲、李恩東 (1998)。虛擬實境的發展與種類。視聽教育雙月刊,40(3), 18-26。
黃仁竑、游寶達 (1995)。遠距教學與虛擬實境(Virtual Reality)。資訊與教育,50,24-27。
楊鈞舜、黃奕勳、謝承哲、鄭志軒、賴致宇、留博政 (2013)。互動式3D 虛擬實境遊戲--環保賽車遊戲。資訊傳播學報,2013,224-229。
廖述盛、黃秀美、賴崇閔 (2011)。虛擬實境結合問題導向學習應用於行動化醫學教育之研究。科學教育學刊,19(3), 237-256。
賴崇閔、黃秀美、廖述盛、黃雯雯 (2009) 。3D 虛擬實境應用於醫學教育接受度之研究。教育心理學報,40(3), 341-361。
謝協君 (2014)。虛擬實境動作復健機對腦性麻痺兒童 上肢動作訓練之成效。人文社會學報,10 (3),203-223。
二、英文部分
Aggarwal, R., Ward, J., Balasundaram, I., Sains, P., Athanasiou, T., & Darzi, A. (2007). Proving the effectiveness of virtual reality simulation for training in laparoscopic surgery. Annals of Surgery, 246(5), 771-779.
Atman, C. J., Adams, R. S., Cardella, M. E., Turns, J., Mosborg, S., & Saleem, J. (2007). Engineering design processes: A comparison of students and expert practitioners. Journal of Engineering Education, 96(4), 359-379.
Akagi, T., Fujimoto, S., Kuno, H., Araki, K., Yamada, S., & Dohta, S. (2015). Systematic educational program for robotics and mechatronics engineering in OUS using robot Competition. Procedia Computer Science, 76, 2-8.
Arora, J. (2004). Introduction to optimum design. NY:Academic Press.
Akhmetov, L. G., Faizrakhmanov, I. M., & Faizrakhmanova, A. L. (2015). Virtual reality in professional activity of a teacher of technology. Procedia-Social and Behavioral Sciences, 191, 2812-2816.
Balaji, M., Balaji, V., Chandrasekaran, M., & Elamvazuthi, I. (2015). Robotic training to bridge school students with engineering. Procedia Computer Science, 76, 27-33.
Burdea, G. C., & Coiffet, P. (2003). Virtual reality technology (Vol. 1). John Wiley & Sons.
Bertram, J., Moskaliuk, J., & Cress, U. (2015). Virtual training: Making reality work? Computers in Human Behavior, 43, 284-292.
Burke, B. N. (2014). The ITEEA 6E learning bydesign™ model: Maximizing informed design and inquiry in the integrative STEM classroom. Technology and Engineering Teacher, 73(6), 14-19.
Blunden, M. (2016). Virtual reality will change our lives, says facebook boss zuckerberg. Evening Standard, 22nd February 2016. Retrieved from http://www.standard.co.uk/news/techandgadgets/virtual-reality-will-change-our-lives-says-zuckerberg-a3186111.html.
Colleen, D., Nancy, W., & Michelle, B. (2011). Virtual clinical education: Going the full distance in nursing Education. Newborn and Infant Nursing Reviews, 11(1), 43-48.
Cibulka, J., & Giannoumis, G. A. (2017, September). Augmented and virtual reality for engineering education. In Proceedings of the 58th Conference on Simulation and Modelling (SIMS 58) Reykjavik, Iceland, September 25th–27th, 2017 (No. 138, pp. 209-219). Linköping University Electronic Press.
Corum, K., & Garofalo, J. (2015). Using digital fabrication to support student learning. 3D Printing and Additive Manufacturing, 1, 50-55.
Cheng, W. J., & Hsiao, H. C. (2001). A creative teaching method for the industrial design (engineering) education on the foundational course. Paper presented at the 4th UICEE Annual Conference on Engineering Education, Bangkok, Thailand.
Crawley, E., Malmqvist, J., Ostlund, S., & Brodeur, D. (2014). Rethinking engineering education: The CDIO Approach (2nd ed). Springer Singapore: Springer.
Carl, L. E., & Anderson, T. (1994). The virtual reality casebook. NY: Van Nostrand Reinbold.
Do, Y. (2013). Self-selective multi-objective robot vision projects for students of different capabilities. Mechatronics, 23(8), 974-986.
Dym, C. L., Agogino, A. M., Eris, O., Frey, D. D., & Leifer, L. J. (2005). Engineering design thinking, teaching, and learning. Journal of Engineering Education, 94(1), 103-120.
Driver, R., Asoko, H., Leach, J.,Mortimer, E., & Scott, P. (1994). Constructing 186 scientific knowledge in the classroom. Educational Researcher, 23(7), 5-12.
Driver, R., & Bell, B. (1986). Students’ thinking and the learning of science: A constructivist view. School Science Review, 67(240), 443-456.
Ertas, A., & Jones, J. C. (1996). The engineering design process. New York: Wiley.
EEKELS, J. (1995). Values, objectivity and subjectivity in science and engineering. Journal of Engeering Design, 6(3), 173-189.
Eisenberg, M. (2013). 3D printing for children: What to build next? International Journal of Child-Computer Interaction, 1(1), 7-13.
Fan, S. C., & Yu, K. C. (2017). How an integrative STEM curriculum can benefit students in engineering design practices. International Journal of Technology and Design Education, 27(1), 107-129.
Gutiérrez, F., Pierce, J., Vergara, V. M., Coulter, R., Saland, L., Caudell, T. P., et al. (2007). The effect of degree of immersion upon learning performance in virtual reality simulations for medical education. Studies in Health Technology and Informatics, 125, 155-160.
Gayer-Anderson, C. (2016). The application of virtual reality technology to understanding psychosis. Social Psychiatry and Psychiatric Epidemiology, 51(7), 937-939.
Grabowski, A., & Jankowski, J. (2015). Virtual Reality-based pilot training for underground coal miners. Safety Science, 72, 310-314.
Hilfert, T., & König, M. (2016). Low-cost virtual reality environment for engineering and construction. Visualization in Engineering, 4(1), 2.
Huang, H. M., Ulrich, R., & Liaw, S. S. (2010).Inverstigating learners attitudes toward virtual reality learning enviromments: Base on a constructivist approach. Computers & Education, 55(3), 1171-1182.
Hwang, W. Y., & Hu, S. S. (2013). Analysis of peer learning behaviors using multiple representations in virtual reality and their impacts on geometry problem solving. Computers & Education, 62, 308–319.
International Technology Education Association. (2000). Standards fortechnological literacy: Content for the study of technology. Retrieved from https://www.iteea.org/File.aspx?id=67767
Jin, Y., & Chusilp, P. (2006). Study of mental iteration in different design situations. Design Studies, 27(1), 25-55.
Jou, M., & Wang, J. (2013). Investigation of effects of virtual reality environments on learning performance of technical skills. Computers in Human Behavior, 29(2), 433-438.
Kuliga, S. F., Thrash, T., Dalton, R. C., & Hölscher, C. (2015). Virtual reality as an empirical research tool—Exploring user experience in a real building and a corresponding virtual model. Computers, Environment and Urban Systems, 54, 363-375.
Krueger, M. K. (1991). Artificial reality II. Boston: Addison-Wesley Professional.
Liu, H., Ong, Y. S., & Cai, J. (2018). A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design. Structural and Multidisciplinary Optimization, 57(1), 393-416.
Lewis, T. (1999). Research in technology education--Some areas of need. Journal of Technology Education, 10(2), 41-56.
Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp swarm algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163-191.
Milkova, L., Crossman, C., Wiles, S., & Allen, T. (2012). Engagement and skill development in biology students through analysis of art. CBE Life Sciences Education, 12(4), 687-700.
Mote, C., Strelecki, K., & Johnson, K. (2014). Cultivating high-level organizational engagement to promote novel learning experiences in STEAM. The STEAM Journal, 1(2), 18.
Monahan, T., McArdle, G., & Bertolotto, M. (2008). Virtual reality for collaborative e-learning. Computers & Education, 50(4), 1339-1353.
Marcello, C., & Massimo, B. (2010). Beyond virtual museums: Experiencing immersive virtual reality in real museums. Journal of Cultural Heritage, 11(4), 452-458.
Merrill, C., Custer, R., Daugherty, J., Westrick, M., & Zeng, Y. (2008). Delivering core engineering concepts to secondary level students. Journal of Technology Education, 20(1), 48-64.
Middleton, H. (2005). Creative thinking, values and design and technology education. International Journal of Technology and Design Education, 15(1), 61-71.
Merrill, C. (2001). Integrated technology, mathematics, and science education: A quasi-experiment. Journal of Industrial Teacher Education, 38(3), 45-61.
NGSS Lead States. (2013). Next generation science standards: For states, by states. Washington, DC: National Academies Press.
Norman, D. (2010). Why design education must change. Core77. Retrieved from http://www.core77.com/posts/17993/why-design-education must-change-17993.
Ohley, W. (2016). Engineering student education in cardiopulmonary resuscitation via virtual reality. Resuscitation, 106, 51.
Olshannikova, E., Ometov, A., Koucheryavy, Y., & Olsson, T. (2015). Visualizing big data with augmented and virtual reality: challenges and research agenda. Journal of Big Data, 2(1), 22.
Parsons, S. (2016). Authenticity in Virtual Reality for assessment and intervention in autism: A conceptual review. Educational Research Review, 19, 138-157.
Prasad, M. S. R., Manivannan, M., Manoharan, G., & Chandramohan. S. M.(2016). Objective assessment of laparoscopic force and psychomotor skills in a novel virtual reality-based haptic simulator. Journal of Surgical Education, 73(5), 858-869.
Passig, D., Tzuriel, D., & Eshel-Kedmi, G. (2016). Improving children's cognitive modifiability by dynamic assessment in 3D Immersive virtual reality environments. Computers & Education, 95, 296-308.
Roozenburg, N., van Breemen, E., & Mooy, S. (2008). A competency-directed curriculum for industrial design engineering. Paper presented at the 10th International Conference on Engineering and Product Design Education, Barcelona, Spain.
Rizk-Allah, R. M. (2018). Hybridizing sine cosine algorithm with multi-orthogonal search strategy for engineering design problems. Journal of Computational Design and Engineering, 5(2), 249-273.
Sampaio, A. Z., & Martins, O. P. (2014). The application of virtual reality technology in the construction of bridge: The cantilever and incremental launching methods. Automation in Construction, 37, 58-67.
Shu, L., Jiang, P., Zhou, Q., Shao, X., Hu, J., & Meng, X. (2018). An on-line variable fidelity metamodel assisted Multi-objective Genetic Algorithm for engineering design optimization. Applied Soft Computing, 66, 438-448.
Tsai, C. C. (1998). Science learning and constructivism. Curriculum and Teaching, 13, 31-52.
Tsai, C. C. (2001). Probing students’ cognitive structures in science: The use of a flow map method coupled with a meta-listening technique. Studies in Educational Evaluation, 27, 257-268.
Thornhill-Miller, B., & Dupont, J. M. (2016). Virtual reality and the enhancement of creativity and innovation: under recognized potential among converging technologies?.Journal of Cognitive Education and Psychology, 15(1), 102-121.
Verner, I., & Merksamer, A. (2015). Digital design and 3D printing in technology teacher education. Procedia CIRP, 36, 182-186.
Vaughan, N., Gabrys, B., & Dubey, V. N. (2016). An overview of self-adaptive technologies within virtual reality training. Computer Science Review, 22, 65-87.
Zuga, K. (2007). STEM and technology education. White Paper written for ITEA, 6. Retrieved from https:/iteea.org/mbraonly/library/whitepaper/STEM(Zuga).pdf