研究生: |
吳百興 Wu, Pai-Hsing |
---|---|
論文名稱: |
建構高中學生探究能力之影響模式:從學習經驗、科學好奇心以及科學投入的因素進行探討 A Structural Models of the Influence on Secondary School Students’ Inquiry Abilities: Investigating the Relationships among the Learning Experiences, Inquiry-related Curiosity, Engagement, and Inquiry Abilities of Students |
指導教授: |
吳心楷
Wu, Hsin-Kai |
學位類別: |
博士 Doctor |
系所名稱: |
科學教育研究所 Graduate Institute of Science Education |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 145 |
中文關鍵詞: | 多媒體導向探究能力評量 、投入 、科學好奇心 、科學探究能力 、科學學習經驗 、結構方程模式 、試題反應理論 |
英文關鍵詞: | engagement, inquiry-related curiosity, item-response theory, learning experience, multimedia-based assessment of scientific inquiry abilities, scientific inquiry ability, structural equation modeling |
DOI URL: | http://doi.org/10.6345/DIS.NTNU.GSE.006.2018.F02 |
論文種類: | 學術論文 |
相關次數: | 點閱:337 下載:111 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來的科學教育改革浪潮中,尤其是《十二年國民基本教育課程綱要》特別地著重於學生探究能力的養成。然而,探究能力的養成除了課程影響之外,是否存在其他因素影響著學生的探究能力。因此,本論文的旨在探討學生的科學學習經驗、科學好奇心以及科學投入對其探究能力的影響關係,希冀能從中建構出高中學生探究能力之影響模式。為達到此一目的本論文以兩項研究,採分層隨機抽樣的方式分別自北北基的高中,抽樣1,090名 (研究一)以及605名 (研究二) 11年級學生來進行施測,並透過結構方程模式的分析方式。藉此探討影響高中學生探究能力發展的因素及其關係。
研究一:主要是探討高中學生的科學學習經驗、探究相關的好奇心及科學活動的投入狀態對學生探究能力的影響關係。研究結果發現學生的好奇心與對實驗活動的投入是中介學習經驗與探究能力之間的重要因素;並發現在好奇心驅使之探究學習歷程中,學生的投入不僅具有直接影響探究能力的效果,同時也扮演著中介的角色來影響他們的好奇心對探究能力的關係。
研究二:根據研究一建立之好奇心驅使探究能力表現的模式進行研究,其探討在好奇心趨動下,認知、行為、情意以及社會互動等不同的投入對探究能力表現的影響效果為何,以及實驗活動中不同的投入之間是否具相互影響的關係。透過結構方程模式的分析,發現四種投入扮演部分中介的角色去影響好奇心對探究能力的關聯;此外並發現學生對感到好奇的事物,會透過不同的實驗活動之投入來激起學生對所參與的活動的喜好,並願意使用更多的認知策略去完成該活動,可能是培養學生探究能力重要的方法。
藉由上述的系列研究,本論文嘗試釐清高中學生之學習經驗、科學好奇心以及科學投入等因素影響其探究能力的關係,並試圖提出影響學生探究能力表現的實徵模型,以提供科學教育研究領域與科學教育者在從事相關研究與教學時的參考與依據,並希冀藉此能夠促進學生在科學探究能力的培養。
The emphasis on scientific inquiry has increased the importance of developing the fundamental abilities to conduct scientific investigations, and has highlighted the need for a model of students’ inquiry abilities. This dissertation addresses the issue of the development of students’ inquiry abilities by examining the interplay among students’ inquiry-related curiosity, engagement, and inquiry abilities, and investigates how their learning experiences associate with such interplay. In addition, this article also concern about how the relationships among the types of engagement in activities of laboratory during the development of students’ inquiry ability. To realize these purposes, two studies were conducted to examine the relationships among variables by employing structural equation modeling to analyze data collected from 1,090 (study 1) and 605 (study 2) 11th graders, including their performance on a multimedia-based assessment of scientific inquiry abilities and their responses to items in an on-line questionnaire. The results revealed that both formal and informal experiences were associated with the laboratory engagement of students through curiosity. Furthermore, the analyses showed that inquiry-related curiosity was associated with their inquiry abilities, and that the association was mediated by their inquiry-related laboratory engagement. Moreover, the results of the relationships among the types of engagement in the study 2 shown that both the behavioral and social engagement played a completely mediated role to associate the influence from emotional engagement to cognitive engagement. Through the paths of behavioral and social engagement, that is, the cognitive strategy use in laboratory activities would be reinforced by their emotions about laboratory activities. Taken together, this dissertation provides structural models to support the importance of having curiosity-driven engagement, and suggests that the science educational community should collaborate to offer secondary school students such learning opportunities in formal and informal science learning settings.
中文部分
王月春. (2004). 科學史融入理化教學促進學生科學探究能力之研究. 國立高雄師範大學化學系碩士論文, (未出版).
白佩宜. (2009). 探討不同探究式教學法對高一學生科學探究能力成長之影響. 國立臺灣師範大學地球科學系碩士論文, (未出版).
任宗浩. (2017). 第三章 研究設計與資料分析. In 林陳涌 (Ed.), 國際數學與科學教育成就趨勢調查國家報告. 2011 (2 ed.). 臺北市 國立臺灣師範大學科學教育中心.
吳怡慧. (2014). 探討POE-Inquiry教學策略對國中八年級學生科學探究能力之影響. 國立臺灣師範大學物理系碩士論文, (未出版).
吳明隆. (2009). 結構方程模式-SIMPLIS的應用. 臺北市: 五南出版社.
吳珮嘉. (2011). 高中學生生命科學實驗設計能力之研究. 國立臺灣師範大學生命科學研究所碩士論文, (未出版).
呂建逸. (2004). 知識嵌入式探究能力與創造力的關聯性. 國立高雄師範大學化學系碩士論文, (未發表).
宋雅鈴. (2009). 應用歷程分析於生物科學探究評量之研究. 國立交通大學理學院碩士論文, (未出版).
李思嫺. (2012). 運用網路資源進行探究教學-以四年級月相概念學習為例. 國立交通大學資訊學院數位圖書資訊學程碩士論文, (未出版).
李哲迪. (2009). 臺灣國中學生在 TIMSS及 PISA 的科學學習成果表現及其啟示. 研習資訊, 26(2), 73-88.
沈奕樟. (2013). 5E學習環教學模式奈米特性教材對高一學生探究能力與學習成效之影響. 國立彰化師範大學物理學系碩士論文, (未出版).
東慶瑋. (2011). 以探究教學提升國中學生科學探究能力與自我效能之行動研究. 國立彰化師範大學科學教育研究所碩士論文, (未出版).
林正發. (2008). 在巢狀探究模式中以圖表提升國二學生科學探究能力之行動研究. 國立彰化師範大學科學教育研究所碩士論文, (未出版).
林建毅. (2015). 透過IESWE探究教學模組提升學生科學探究能力與科學本質之研究. 國立東華大學課程設計與潛能開發學系碩士論文, (未出版).
林素微. (1998). 實作評量在數學教學上的應用. In 國小教學評量的反省與前瞻 (Ed.): 台南師院測驗發展中心.
邱浩政. (2005). 結構方程模式─LISREL的理論、技術與應用. 臺北市: 雙葉書局.
柯翠菱. (2014). 以評量回饋教學融入國二學生科學探究能力學習進程之研究. 國立屏東教育大學數理教育研究所碩士論文, (未出版).
洪文東. (2004). 九年一貫課程「自然與生活科技」學習領域科學探究能力之培養研究—以探究式教學活動設計提升學生科學研究能力 行政院國家科學委員會專題研究計劃期中報告
洪振方, & 陳毓凱. (2011). 高中探究本位課程之設計與實施的個案研究---以新興科技議題為例 科學教育學刊, 19(1), 1-23. doi:10.6173/CJSE.2011.1901.01
張文馨. (2010). 探討後設認知引導策略對學生探究能力與概念改變的影響. 國立臺灣師範大學地球科學系碩士論文, (未出版).
教育部. (2014). 十二年國民基本教育課程綱要總綱. 臺北市: 教育部.
教育部. (2015). 國民中小學暨普通型高級中等學校:自然科學領域課程綱要草案. 臺北市: 教育部.
許瑋琇. (2010). 鷹架式探究課程對高中生探究能力之影響. 國立臺灣師範大學地球科學系碩士論文, (未出版).
郭泓男. (2013). 探討導入科學探究教學於科展培訓對學生科學探究能力之影響. 國立臺灣師範大學科學教育研究所碩士論文, (未出版).
陳君婷. (2011). 探討科學推理融入科學探究課程對國小學生探究能力與科學推理之影響. 國立交通大學教育研究所碩士論文, (未出版).
陳佳霙. (2010). 鷹架探究式學習與問題導向式之數位學習活動對國中生概念理解、科學態度及探究能力的影響. 國立彰化師範大學商業教育學系士論文, (未出版).
陳梅香. (2010). 探討鷹架式網路形成科學議題課程對國小學生形成科學議題能力與科學探究能力之影響. 國立交通大學教育研究所碩士論文, (未出版).
彭天音. (2010). 探討氣象探究網路競賽中學生科學探究能力的表現. 國立臺灣師範大學地球科學系碩士論文, (未出版).
黃芳銘. (2007). 結構方程模式:理論與應用. 臺北市: 五南出版社.
黃淑卿. (2004). 利用探究教學提昇國一學生科學探究能力之行動研究. 國立彰化師範大學科學教育研究所碩士論文, (未出版).
黃傅俊. (2015). 實施實驗式探究教學對於國小五年級學生科學探究能力表現之研究. 國立嘉義大學數理教育研究所碩士論文, (未出版).
黃富順. (2005). 對我國實施非正規學習成就認證之省思與展望. 台北市: 師大書苑.
黃瑟芸. (2008). 實施探究教學之行動研究對提昇八年級學生科學知識觀與探究能力之影響. 國立彰化師範大學科學教育研究所碩士論文, (未出版).
楊志平. (2008). 利用「巢狀探究教學模式」提升高中生科學探究能力之行動研究─以「酸鹼滴定」為例. 國立彰化師範大學科學教育研究所碩士論文, (未出版).
楊秀停, & 王國華. (2007). 實施引導式探究教學對於國小學童學習成效之影響. 科學教育學刊, 15(4), 439-459.
劉宏文, & 張惠博. (2001). 高中學生進行開放式探究活動之個案研究-問題的形成與解決. 科學教育學刊, 9(2), 169-196.
蔡佩綾. (2015). 論證取向之生物科技議題線上模組對國中學生概念及探究能力之影響. 國立臺灣師範大學生命科學系碩士論文, (未出版).
蔡錕承, & 張欣怡. (2011). 結合實物與虛擬實驗促進八年級學生「溫度與熱」知識整合、實驗能力與學習策略之研究. 科學教育學刊, 19(5), 435-460. doi:10.6173/CJSE.2011.1905.03
蕭景隆. (2014). 以情境式數位遊戲提升學生解釋科學現象及科學探究能力之研究. 國立臺北教育大學自然科學教育學系碩士論文, (未出版).
謝莉文. (2006). 鷹架式科學探究課程研發與實踐的個案研究. 國立臺灣師範大學地球科學系碩士論文, (未出版).
簡晉龍, & 任宗浩. (2011). 邁向科學之路?臺灣中學生性別對科學生涯選擇意向之影響. 科學教育學刊, 19(5), 461-481. doi:10.6173/CJSE.2011.1905.04
西文部分
Abd-El-Khalick, F., Boujaoude, S., Duschl, R., Lederman, N. G., Mamlok-Naaman, R., Hofstein, A., . . . Tuan, H. L. (2004). Inquiry in science education: International perspectives. Science Education, 88, 394-419. doi:10.1002/sce.10118
Adams, R. J., & Wu, M. L. (2007). The mixed-coefficients multinomial logit model: A generalized form of the Rasch model. In M. von Davier & C. H. Carstensen (Eds.), Multivariate and mixture distribution Rasch models: Extensions and applications (pp. 55-76). London, UK: Springer.
Allen, S. (2004). Designs for learning: Studying science museum exhibits that do more than entertain. Science Education, 88(S1), S17-S33. doi:10.1002/sce.20016
American Association for the Advancement of Science. (1989). Science for all Americans : A Project 2061 report on literacy goals in science, mathematics, and technology. Washington, DC: American Association for the Advancement of Science.
American Association for the Advancement of Science. (1993). Benchmarks for science literacy. New York, NY: Oxford University Press.
American Educational Research Association, American Psychological Association, & National Council on Measurement in Education. (1999). Standards for educational and psychological testing. Washington, DC: American Educational Research Association.
Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411-423. doi:10.1037//0033-2909.103.3.411
Archambault, I., Janosz, M., Fallu, J. S., & Pagani, L. S. (2009). Student engagement and its relationship with early high school dropout. Journal of Adolescence, 32(3), 651-670. doi:10.1016/j.adolescence.2008.06.007
Ash, D. (2003). Dialogic inquiry in life science conversations of family groups in a museum. Journal of Research in Science Teaching, 40(2), 138-162. doi:10.1002/tea.10069
Astin, A. W. (1984). Student involvement: A developmental theory for higher education. Journal of college student personnel, 25(4), 297-308.
Azevedo, F. S. (2011). Lines of practice: A practice-centered theory of interest relationships. Cognition and Instruction, 29(2), 147-184. doi:10.1080/07370008.2011.556834
Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74-94. doi:10.1007/bf02723327
Bagozzi, R. P., & Yi, Y. (1991). Multitrait-multimethod matrices in consumer research. Journal of Consumer Research, 17(4), 426-439.
Bathgate, M. E., Schunn, C. D., & Correnti, R. (2014). Children's motivation toward science across contexts, manner of interaction, and topic. Science Education, 98(2), 189-215. doi:10.1002/sce.21095
Berlyne, D. E. (1954). A Theory of human curiosity. British Journal of Psychology, 45(3), 180-191. doi:10.1111/j.2044-8295.1954.tb01243.x
Blumenfeld, P. C., & Meece, J. L. (1988). Task factors, teacher behavior, and students' involvement and use of learning strategies in science. The Elementary School Journal, 88(3), 235-250. doi:10.1086/461536
Bollen, K. A. (1989). Structural equations with latent variables. New York, NY: Wiley.
Buffler, A., Allie, S., & Lubben, F. (2001). The development of first year physics students' ideas about measurement in terms of point and set paradigms. International Journal of Science Education, 23(11), 1137-1156. doi:10.1080/09500690110039567
Cacioppo, J. T., & Gardner, W. L. (1999). The affect system has parallel and integrative processing components: Form follows function. Journal of Personality and Social Psychology, 76(5), 839-855. doi:10.1037/0022-3514.76.5.839
Callanan, M. A., & Jipson, J. (2001). Explanatory conversations and young children's developing scientific literacy. In K. Crowley, C. D. Schunn, & T. Okada (Eds.), Designing for science: Implications from everyday, classroom, and professional settings (pp. 21-49). Mahwah, NJ: Lawrence Erlbaum Associations.
Callanan, M. A., & Oakes, L. M. (1992). Preschoolers' questions and parents' explanations: Causal thinking in everyday activity. Cognitive Development, 7(2), 213-233. doi:10.1016/0885-2014(92)90012-G
Chen, F., Curran, P. J., Bollen, K. A., Kirby, J., & Paxton, P. (2008). An empirical evaluation of the use of fixed cutoff points in RMSEA test statistic in structural equation models. Sociological Methods & Research, 36(4), 462-494. doi:10.1177/0049124108314720
Chen, F. F., Jing, Y., Hayes, A., & Lee, J. M. (2013). Two concepts or two approaches? A bifactor analysis of psychological and subjective well-being. Journal of Happiness Studies, 14(3), 1033-1068. doi:10.1007/s10902-012-9367-x
Chin, C., & Chia, L.-G. (2004). Problem-based learning: Using students' questions to drive knowledge construction. Science Education, 88(5), 707-727. doi:10.1002/sce.10144
Chin, C., & Osborne, J. (2008). Students' questions: a potential resource for teaching and learning science. Studies in Science Education, 44(1), 1-39. doi:10.1080/03057260701828101
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, N.J. : Lawrence Erlbaum Associates.
Comrey, A. L., & Lee, H. B. (1992). A first course in factor analysis. Hillsdale, NJ: Erlbaum.
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297-334. doi:10.1007/bf02310555
De Jesus Pedrosa, H., Teixeira-Dias, J. J. C., & Watts, M. (2003). Questions of chemistry. International Journal of Science Education, 25(8), 1015-1034. doi:10.1080/09500690305022
Dierking, L. D., & Falk, J. H. (2003). Optimizing out-of-school time: The role of free-choice learning. New Directions for Youth Development, 2003(97), 75-88. doi:10.1002/yd.36
Eccles, J. S., & Wang, M. (2012). Part I commentary: So what is student engagement anyway? Retrieved from New York, NY:
Engel, S. (2011). Children's need to know: Curiosity in schools. Harvard educational review, 81(4), 625-645. doi:10.17763/haer.81.4.h054131316473115
Engle, R. A., & Conant, F. R. (2002). Guiding principles for fostering productive disciplinary engagement: Explaining an emergent argument in a community of learners classroom. Cognition and Instruction, 20(4), 399-483. doi:10.1207/s1532690xci2004_1
Entwisle, D. R., Alexander, K. L., & Olson, L. S. (2005). First grade and educational attainment by age 22: A new story. American Journal of Sociology, 110(5), 1458-1502. doi:10.1086/428444
Erickson, F., & Shultz, J. (1992). Students' experience of the curriculum. In P. W. Jackson (Ed.), Handbook of Research on Curriculum: A Project of the American Educational Research Association (pp. 465-485). New York: Macmillan.
Falk, J. H., Dierking, L. D., Osborne, J., Wenger, M., Dawson, E., & Wong, B. (2015). Analyzing science education in the United Kingdom: Taking a system-wide approach. Science Education, 99(1), 145-173. doi:10.1002/sce.21140
Fender, J. G., & Crowley, K. (2007). How parent explanation changes what children learn from everyday scientific thinking. Journal of Applied Developmental Psychology, 28(3), 189-210. doi:10.1016/j.appdev.2007.02.007
Finn, J. D. (1989). Withdrawing from school. Review of Educational Research, 59(2), 117-142. doi:10.3102/00346543059002117
Finn, J. D., & Voelkl, K. E. (1993). School characteristics related to student engagement. The Journal of Negro Education, 62(3), 249-268. doi:10.2307/2295464
Forman, E. A., Engle, R. A., Venturini, P., & Ford, M. J. (2014). Introduction to special issue: International examinations and extensions of the productive disciplinary engagement framework. International Journal of Educational Research, 64, 149-155. doi:10.1016/j.ijer.2013.07.007
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. doi:10.2307/3151312
Foy, P., Galia, J., & Li, I. (2008). Chapter 11: Scaling the data from the TIMSS 2007 mathematics, science assessments. In J. F. Olson, M. O. Martin, & I. V. S. Mullis (Eds.), TIMSS, 2007 technical report (pp. 225-280). Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College.
Fraser, B. J., & McRobbie, C. J. (1995). Science laboratory classroom environments at schools and universities: A cross‐national study. Educational Research and Evaluation, 1(4), 289-317. doi:10.1080/1380361950010401
Fredricks, J. A., Blumenfeld, P. C., & Paris, A. H. (2004). School engagement: Potential of the concept, state of the evidence. Review of Educational Research, 74(1), 59-109. doi:10.3102/00346543074001059
Fredricks, J. A., & Eccles, J. S. (2002). Children's competence and value beliefs from childhood through adolescence: Growth trajectories in two male-sex-typed domains. Journal of Developmental Psychology, 38(4), 519-533. doi:10.1037/0012-1649.38.4.519
Fredricks, J. A., Wang, M.-T., Schall Linn, J., Hofkens, T. L., Sung, H., Parr, A., & Allerton, J. (2016). Using qualitative methods to develop a survey measure of math and science engagement. Learning and Instruction, 43, 5-15. doi:10.1016/j.learninstruc.2016.01.009
Fredrickson, B. L., & Joiner, T. (2002). Positive emotions trigger upward spirals toward emotional well-being. Psychological Science, 13(2), 172-175. doi:10.1111/1467-9280.00431
Freedman, M. P. (1997). Relationship among laboratory instruction, attitude toward science, and achievement in science knowledge. Journal of Research in Science Teaching, 34(4), 319-424. doi:10.1002/(SICI)1098-2736(199704)34:4<343::AID-TEA5>3.0.CO;2-R
French, D. C., & Conrad, J. (2001). School dropout as predicted by peer rejection and antisocial behavior. Journal of Research on Adolescence, 11(3), 225-244. doi:10.1111/1532-7795.00011
Gauld, C. F., & Hukins, A. A. (1980). Scientific attitudes: A review. Studies in Science Education, 7(1), 129-161. doi:10.1080/03057268008559877
Gefen, D., Straub, D., & Boudreau, M.-C. (2000). Structural equation modeling and regression: Guidelines for research practice. Communications of the Association for Information Systems, 4(1), Article 7.
Germann, P. J., Aram, R., Odom, A. L., & Burke, G. (1996). Student performance on asking questions, identifying variables, and formulating hypotheses. School Science and Mathematics, 96(4), 192 -201. doi:10.1111/j.1949-8594.1996.tb10224.x
Greene, B. A., & Miller, R. B. (1996). Influences on achievement: Goals, perceived ability, and cognitive engagement. Contemporary Educational Psychology, 21(2), 181-192. doi:10.1006/ceps.1996.0015
Greene, B. A., Miller, R. B., Crowson, H. M., Duke, B. L., & Akey, K. L. (2004). Predicting high school students' cognitive engagement and achievement: Contributions of classroom perceptions and motivation. Contemporary Educational Psychology, 29(4), 462-482. doi:10.1016/j.cedpsych.2004.01.006
Greenwood, C. R. (1996). The case for performance-based instructional models. School Psychology Quarterly, 11(4), 283-296. doi:10.1037/h0088935
Greenwood, C. R., Horton, B. T., & Utley, C. A. (2002). Academic engagement: Current perspectives on research and practice. School Psychology Review, 31(3), 328-349.
Gunuc, S., & Kuzu, A. (2015a). Confirmation of Campus-Class-Technology Model in student engagement: A path analysis. Computers in Human Behavior, 48, 114-125. doi:10.1016/j.chb.2015.01.041
Gunuc, S., & Kuzu, A. (2015b). Student engagement scale: development, reliability and validity. Assessment & Evaluation in Higher Education, 40(4), 587-610. doi:10.1080/02602938.2014.938019
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2009). Multivariate data analysis. Upper Saddle River, NJ: Pearson Prentice Hall.
Harrington, D. (2008). Confirmatory factor analysis. New York, NY: Oxford University Press.
Hidi, S., & Renninger, K. A. (2006). The four-phase model of interest development. Educational Psychologist, 41(2), 111-127. doi:10.1207/s15326985ep4102_4
Hiebert, J., Carpenter, T. P., Fennema, E., Fuson, K., Human, P., Murray, H., . . . Wearne, D. (1996). Problem solving as a basis for reform in curriculum and instruction: The case of mathematics. Educational Researcher, 25(4), 12-21. doi:10.3102/0013189X025004012
Hoffmann, L. (2002). Promoting girls' interest and achievement in physics classes for beginners. Learning and Instruction, 39(9), 870-888. doi:10.1002/tea.10048
Hofstein, A., & Kind, P. M. (2012). Learning in and from science laboratories. In B. J. Fraser, K. Tobin, & C. J. McRobbie (Eds.), Springer International Handbooks of Education, Second International Handbook of Science Education (Vol. 24, pp. 189-207). Dordrecht, Netherlands: Springer.
Hofstein, A., & Lunetta, V. N. (1982). The role of the laboratory in science teaching: Neglected aspects of research. Review of Educational Research, 52(2), 201-217. doi:10.3102/00346543052002201
Hofstein, A., & Lunetta, V. N. (2004). The laboratory in science education: Foundations for the twenty-first century. Science Education, 88(1), 28-54. doi:10.1002/sce.10106
Hofstein, A., & Rosenfeld, S. (1996). Bridging the gap between formal and informal science learning. Studies in Science Education, 28(1), 87-112. doi:10.1080/03057269608560085
Hooper, D., Coughlan, J., & Mullen, M. (2008). Structural equation modelling: Guidelines for determining model fit. Electronic Journal of Business Research Methods, 6(1), 53-60.
Hoyle, R. H. (1995). Structural equation modeling: Concepts, issues, and applications. Thousand Oaks, CA: SAGE Publications Inc.
Hu, L.-t., Bentler, P. M., & Kano, Y. (1992). Can test statistics in covariance structure analysis be trusted? Psychological Bulletin, 112(2), 351-362. doi:10.1037/0033-2909.112.2.351
Hughes, J. N., Luo, W., Kwok, O. M., & Loyd, L. K. (2008). Teacher-student support, effortful engagement, and achievement: A 3-year longitudinal study. Journal of Educational Psychology, 100(1), 1-14. doi:10.1037/0022-0663.100.1.1
Jöreskog, K. G., & Sörbom, D. (1996). LISREL 8: User's reference guide (2nd ed.). Lincolnwood, IL: Scientific Software International.
Järvelä, S., Järvenoja, H., Malmberg, J., Isohätälä, J., & Sobocinski, M. (2016). How do types of interaction and phases of self-regulated learning set a stage for collaborative engagement? Learning and Instruction, 43, 39-51. doi:10.1016/j.learninstruc.2016.01.005
Jang, H., Kim, E. J., & Reeve, J. (2016). Why students become more engaged or more disengaged during the semester: A self-determination theory dual-process model. Learning and Instruction, 43, 27-38. doi:10.1016/j.learninstruc.2016.01.002
Jirout, J., & Klahr, D. (2012). Children’s scientific curiosity: In search of an operational definition of an elusive concept. Developmental Review, 32(2), 125-160. doi:10.1016/j.dr.2012.04.002
Kahraman, N. (2014). Cross-grade comparison of relationship between students' engagement and TIMSS 2011 Science Achievement. Egitim Ve Bilim-Education and Science, 39(172), 95-107.
Kearsley, G., & Shneiderman, B. (1998). Engagement Theory:A framework for technology-based teaching and learning. Educational Technology, 38(5), 20-23.
Kelloway, E. K. (1998). Using LISREL for structural equation modeling: A researcher's guide. Thousand Oaks, CA: Sage.
Klahr, D., & Carver, S. M. (1995). Scientific thinking about scientific thinking. Monographs of the Society for Research in Child Development, 60(4), 137-151.
Kline, R. B. (2011). Principles and practice of structural equation modeling (3rd ed.). New York, NY: Guilford Publications.
Kolodner, J. L., Camp, P. J., Crismond, D., Fasse, B., Gray, J., Holbrook, J., . . . Ryan, M. (2003). Problem-based learning meets case-based reasoning in the Middle-School science classroom: Putting Learning by Design™ Into practice. Journal of the Learning Sciences, 12(4), 495-547.
Koslowski, B. (1996). Theory and evidence: The development of scientific reasoning. Cambridge, Massachusetts: The MIT Press.
Krajcik, J. (2015, August). Constructing assessment tasks that integrate core ideas, science practices and crosscutting concepts. Paper presented at the biannual conference of European Science Education Research Association Meeting, Helsinki, Finland.
Krajcik, J., Blumenfeld, P. C., Marx, R. W., Bass, K. M., Fredricks, J. A., & Soloway, E. (1998). Inquiry in project-based science classrooms: Initial attempts by middle school students. Journal of the Learning Sciences, 7(3&4), 313-350. doi:10.1080/10508406.1998.9672057
Krajcik, J., & Czerniak, C. M. (2007). Teaching children science in elementary and middle school classrooms: A project-based approach. New York, NY: McGraw-Hill.
Krajcik, J., Czerniak, C. M., & Berger, C. (2003). Teaching children science in elementary and middle school classrooms: A project-based approach. New York: McGraw-Hill.
Krapp, A. (2002). An educational-psychological theory of interest and its relation to SDT. Rochester, NY: University of Rochester Press.
Krapp, A., & Prenzel, M. (2011). Research on Interest in science: Theories, methods, and findings. International Journal of Science Education, 33(1), 27-50. doi:10.1080/09500693.2010.518645
Kuh, G. D. (2003). What we're learning about student engagement from NSSE: Benchmarks for effective educational practices. Education Collection, 35(2), 24-32. doi:10.1080/00091380309604090
Kuh, G. D. (2009). What student affairs professionals need to know about student engagement. Education Collection, 50(6), 683-706. doi:10.1353/csd.0.0099
Kuo, C.-Y., Wu, H.-K., Jen, T.-H., & Hsu, Y.-S. (2015). Development and validation of a multimedia-based assessment of scientific inquiry abilities. International Journal of Science Education, 37(14), 2326-2357. doi:10.1080/09500693.2015.1078521
Leibham, M. B., Alexander, J. M., & Johnson, K. E. (2013). Science interests in preschool boys and girls: Relations to later self-concept and science achievement. Science Education, 97(4), 574-593. doi:10.1002/sce.21066
Li, Y. B., & Lerner, R. M. (2013). Interrelations of behavioral, emotional, and cognitive school engagement in high school students. Journal of Youth and Adolescence, 42(1), 20-32. doi:10.1007/s10964-012-9857-5
Linnenbrink-Garcia, L., Rogat, T. K., & Koskey, K. L. K. (2011). Affect and engagement during small group instruction. Contemporary Educational Psychology, 36(1), 13-24. doi:10.1016/j.cedpsych.2010.09.001
Litman, J. A. (2005). Curiosity and the pleasures of learning: Wanting and liking new information. Cognition and Emotion, 19(6), 793-814. doi:10.1080/02699930541000101
Litman, J. A., Hutchins, T., & Russon, R. (2005). Epistemic curiosity, feeling-of-knowing, and exploratory behaviour. Cognition and Emotion, 19(4), 559-582. doi:10.1080/02699930441000427
Litman, J. A., & Jimerson, T. L. (2004). The measurement of curiosity as a feeling of deprivation. Journal of personality assessment, 82(2), 147-157. doi:10.1207/s15327752jpa8202_3
Loewenstein, G. (1994). The psychology of curiosity: A review and reinterpretation. Psychological Bulletin, 116(1), 75-98. doi:10.1037//0033-2909.116.1.75
Lorch, R. F., Lorch, E. P., Calderhead, W. J., Dunlap, E. E., Hodell, E. C., & Freer, B. D. (2010). Learning the control of variables strategy in higher and lower achieving classrooms: Contributions of explicit instruction and experimentation. Journal of Educational Psychology, 102(1), 90-101. doi:10.1037/a0017972
Luce, M. R., & Hsi, S. (2015). Science-relevant curiosity expression and interest in science: An exploratory study. Science Education, 99(1), 70-97. doi:10.1002/sce.21144
Martin, L. M. W. (2004). An emerging research framework for studying informal learning and schools. Science Education, 88(S1), S71-S82. doi:10.1002/sce.20020
Martin, M. O., & Mullis, I. V. S. (2012). Methods and procedures in TIMSS and PIRLS 2011. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College.
McNeill, K. L. (2011). Elementary students' views of explanation, argumentation, and evidence, and their abilities to construct arguments over the school year. Journal of Research in Science Teaching, 48(7), 793-823. doi:10.1002/tea.20430
Meece, J. L., Blumenfeld, P. C., & Hoyle, R. H. (1988). Students' goal orientations and cognitive engagement in classroom activities. Journal of Educational Psychology, 80(4), 514-523. doi:10.1037/0022-0663.80.4.514
Mehrens, W. A. (1992). Using performance assessment for accountability purposes. Educational Measurement: Issues and Practice, 11(1), 3-20. doi:10.1111/j.1745-3992.1992.tb00220.x
Mislevy, R. J., Johnson, E. G., & Muraki, E. (1992). Scaling procedures in NAEP. Journal of Educational and Behavioral Statistics, 17(2), 131-154. doi:10.3102/10769986017002131
Mussel, P. (2010). Epistemic curiosity and related constructs: Lacking evidence of discriminant validity. Personality and Individual Differences, 49(5), 506-510. doi:10.1016/j.paid.2010.05.014
Myers, M. J., & Burgess, A. B. (2003). Inquiry-based laboratory course improves students' ability to design experiments and interpret data. Advances In Physiology Education, 27(1), 26-33. doi:10.1152/advan.00028.2002
National Research Council. (1996). National science education standards. Washington, DC: National Academy Press.
National Research Council. (2000). Inquiry and the national science education standards: A guide for teaching and learning. Washington, DC: National Academy Press.
National Research Council. (2006). America’s lab report: Investigations in high school science. Committee on High School Science Laboratories: Role and Vision, S.R. Singer, M.L. Hilton, and H.A. Schweingruber, Editors. Board on Science Education, Center for Education. Division of Behavioral and Social Sciences and Education. Washington, DC: National Academies Press.
National Research Council. (2009). Learning science in informal environments: People, places, and pursuits. Washington, DC: National Academy Press.
National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Committee on a Conceptual Framework for New K-12 Science Education Standards. Board on Science Education, Division of Behavioral and Social Sciences and Education. Washington, DC: National Academies Press.
Newmann, F. M., Wehlage, G. G., & Lamborn, S. D. (1992). The significance and sources of student engagement. In F. M. Newmann (Ed.), Student Engagement and Achievement in American Secondary Schools. New York, NY: Teachers College Pre,ss.
Norris, S. P., & Phillips, L. M. (2003). How literacy in its fundamental sense is central to scientific literacy. Science Education, 87(2), 224-240.
Nystrand, M., & Gamoran, A. (1991). Instructional Discourse, Student Engagement, and Literature Achievement. Research in the Teaching of English, 25(3), 261-290.
Ogawa, M. (1995). Science-education in a multiscience perspective. Science Education, 79(5), 583-593. doi:10.1002/sce.3730790507
Ohio Department of Education. (2002). Oregon Standards. Retrieved from Salem, OR:
Ohio Department of Education. (2007). Science teaching and learning to standards: Oregon teacher resources 2007-2009. Retrieved from Salem, OR: http://www.ode.state.or.us/search/results/?id=246
Oliver, J. S., & Simpson, R. D. (1988). Influences of attitude toward science, achievement motivation, and science self concept on achievement in science: A longitudinal study. Science Education, 72(2), 143-155. doi:10.1002/sce.3730720204
Organisation for Economic Co-operation and Development. (2009). PISA 2006 technical report. Paris, France: OECD.
Organisation for Economic Co-operation and Development. (2012). PISA 2009 technical report. Paris, France: OECD.
Organisation for Economic Co-operation and Development. (2013, March). PISA 2015: Draft science framework Retrieved from http://www.oecd.org/pisa/pisaproducts/Draft%20PISA%202015%20Science%20Framework%20.pdf
Organisation for Economic Co-operation and Development. (2016). PISA 2015 results: Excellence and equity in education (Volume I). Retrieved from
Penner, D. E., Lehrer, R., & Schauble, L. (1998). From physical models to biomechanics: A design-based modeling approach. Journal of the Learning Sciences, 7(3&4), 429-449. doi:10.1080/10508406.1998.9672060
Pine, J., Aschbacher, P., Roth, E., Jones, M., McPhee, C., Martin, C., . . . Foley, B. (2006). Fifth graders' science inquiry abilities: A comparative study of students in hands-on and textbook curricula. Journal of Research in Science Teaching, 43(5), 467-484. doi:10.1002/tea.20140
Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: a critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879-903. doi:10.1037/0021-9010.88.5.879
Quellmalz, E. S., Timms, M. J., Silberglitt, M. D., & Buckley, B. C. (2012). Science assessments for all: Integrating science simulations into balanced state science assessment systems. Journal of Research in Science Teaching, 49(3), 363-393. doi:10.1002/tea.21005
Rutkowski, L., Gonzalez, E., Joncas, M., & von Davier, M. (2010). International large-scale assessment data: Issues in secondary analysis and reporting. Educational Researcher, 39(2), 142-151. doi:10.3102/0013189x10363170
Ryan, A. M., & Patrick, H. (2001). The classroom social environment and changes in adolescents' motivation and engagement during middle school. American Educational Research Journal, 38(2), 437-460. doi:10.3102/00028312038002437
Scheuermann, F., & Björnsson, J. (Eds.). (2009). The transition to computer-based assessment: New approaches to skills assessment and implications for large-scale testing. Luxembourg: European Communities.
Schwarz, A., Schwarz, C., & Rizzuto, T. (2008, 7-10 Jan. 2008). Examining the “urban legend” of common method bias: Nine common errors and their impact. Paper presented at the 41st Annual Hawaii International Conference on System Sciences (HICSS 2008), Waikoloa, HI.
Shernoff, D. J., Kelly, S., Tonks, S. M., Anderson, B., Cavanagh, R. F., Sinha, S., & Abdi, B. (2016). Student engagement as a function of environmental complexity in high school classrooms. Learning and Instruction, 43, 52-60. doi:10.1016/j.learninstruc.2015.12.003
Shumow, L., Schmidt, J. A., & Zaleski, D. J. (2013). Multiple perspectives on student learning, engagement, and motivation in high school biology labs. The High School Journal, 96(3), 232-252. doi:10.1353/hsj.2013.0010
Skinner, E. A., & Belmont, M. J. (1993). Motivation in the classroom: Reciprocal effects of teacher behavior and student engagement across the school year. Journal of Educational Psychology, 85(4), 571 -581 doi:10.1037//0022-0663.85.4.571
Songer, N. B., Lee, H.-S., & McDonald, S. (2003). Research towards an expanded understanding of inquiry science beyond one idealized standard. Science Education, 87(4), 490-516. doi:10.1002/sce.10085
Stocklmayer, S. M., Rennie, L. J., & Gilbert, J. K. (2010). The roles of the formal and informal sectors in the provision of effective science education. Studies in Science Education, 46(1), 1-44. doi:10.1080/03057260903562284
Stohr-Hunt, P. M. (1996). An analysis of frequency of hands-on experience and science achievement. Journal of Research in Science Teaching, 33(1), 101-109. doi:10.1002/(SICI)1098-2736(199601)33:1<101::AID-TEA6>3.0.CO;2-Z
Tamir, P. (1978). Inquiry and curiosity in biology. Journal of Biological Education, 12(3), 215-223. doi:10.1080/00219266.1978.9654199
Teo, T., Tsai, L. T., & Yang, C.-C. (2013). Applying structural equation modeling (SEM) in educational research: An introduction. In M. S. Khine (Ed.), Application of Structural Equation Modeling in Educational Research and Practice (Vol. 7). Rotterdam: Sense Publishers.
Titmus, C., Buttedahl, P., Ironside, D., & Lengrand, P. (1979). Terminology of adult education. Paris: United Nations Educational, Scientific and Cultural Organisation.
Tobin, K. G. (1986). Secondary science laboratory activities. European Journal of Science Education, 8(2), 199-211. doi:10.1080/0140528860080208
Tobin, K. G., & Capie, W. (1982). Relationships between formal reasoning ability, locus of control, academic engagement and integrated process skill achievement. Journal of Research in Science Teaching, 19(2), 113-121. doi:10.1002/tea.3660190203
van Lent, G. (2009). Risks and benefits of CBT versus PBT in high-stakes testing: Introducing key concerns and decision making aspects for educational authorities. In F. Scheuermann & J. Björnsson (Eds.), The transition to computer-based assessment: New approaches to skills assessment and implications for large-scale testing (pp. 83-91). Luxembourg: Office for Official Publications of the European Communities.
von Davier, M., Gonzalez, E., & Mislevy, R. J. (2009). What are plausible values and why are they useful. Issues and Methodologies in Large-Scale Assessments: IERI Monograph Series, 2(1), 9-36.
Walberg, H. J. (1991). Improving school science in advanced and developing countries. Review of Educational Research, 61(1), 25-69. doi:10.3102/00346543061001025
Wang, M.-T., Fredricks, J. A., Ye, F., Hofkens, T. L., & Linn, J. S. (2016). The math and science engagement scales: Scale development, validation, and psychometric properties. Learning and Instruction, 43, 16-26. doi:10.1016/j.learninstruc.2016.01.008
Wellington, J. (1990). Formal and informal learning in science: The role of the interactive science centres. Physics Education, 25(5), 247-252. doi:10.1088/0031-9120/25/5/307
White, B. Y., & Frederiksen, J. R. (1998). Inquiry, modeling, and metacognition: Making science accessible to all students. Cognition and Instruction, 16(1), 3-118. doi:10.1207/s1532690xci1601_2
Wu, H. K., & Huang, Y. L. (2007). Ninth-grade student engagement in teacher-centered and student-centered technology-enhanced learning environments. Science Education, 91(5), 727-749. doi:10.1002/sce.20216
Wu, P.-H., Wu, H.-K., & Hsu, Y.-S. (2013). Establishing the criterion-related, construct, and content validities of a simulation-based assessment of inquiry abilities. International Journal of Science Education, 36(10), 1630-1650. doi:10.1080/09500693.2013.871660
Yager, R. E., & Penick, J. E. (1986). Perceptions of four age groups toward science classes, teachers, and the value of science. Science Education, 70(4), 355-363. doi:10.1002/sce.3730700402