簡易檢索 / 詳目顯示

研究生: 宋伊婷
Sung, Yi-Ting
論文名稱: 血栓素及血栓素受體訊息在短期與長期被動吸菸造成動脈血栓性疾病及肺部損傷之角色
The Role of Thromboxane A2/Thromboxane Receptor Signaling in Acute and Prolonged Passive Smoking Induced Arterial Thrombotic Disease and Pulmonary Injuries
指導教授: 鄭劍廷
Chien, Chiang-Ting
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 93
中文關鍵詞: 二手菸三手菸血管栓塞肺部損傷血栓素血栓素受體
英文關鍵詞: Second-hand smoke, Third-hand smoke, Thrombosis, Pulmonary Injury, Thromboxane A2, Thromboxane receptor
DOI URL: https://doi.org/10.6345/NTNU202204788
論文種類: 學術論文
相關次數: 點閱:106下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 被動菸害,包含二手菸害及三手菸害,其中二手菸害又分成主流菸煙及側流菸煙, 被動菸害與主動菸害皆會造成心血管疾病及肺部疾病,本研究主要利用側流菸煙及三手菸探討心血管及肺部發炎性相關疾病。
    香菸中的活性氧化物質會導致血小板過度活化,促進血栓形成,而花生四烯酸經血栓素合成酶 (Thromboxane A2 synthase, TXAS) 合成血栓素A2 (Thromboxane A2, TXA2) ,與血栓素受體 (Thromboxane prostanoid receptor, TP receptor) 結合會引起血小板活化,而血小板過度活化或內皮細胞受損,又會導致TXA2濃度增加,然而過去對於香菸及TXAS-TXA2-TP 訊息傳遞路徑的調控仍未釐清。
    本研究利用TXAS、TP基因剔除小鼠及兩者基因皆剔除之小鼠,吸入側流菸煙及三手菸煙與動脈血栓性疾病的模式,探討被動菸害對動脈血栓形成及肺部發炎性變化。實驗分成TXAS+/+TP+/+、TXAS-/-TP+/+、TXAS+/+TP-/- 及TXAS-/-TP-/-小鼠並給予無菸煙暴露,菸煙暴露1週,菸煙暴露5週及菸煙暴露8週處理,共16組 (各組n=6),並利用氯化鐵誘發急性動脈血管栓塞以檢測血栓形成所需時間,再藉由病生理及分生結果了解香菸及TXAS-TXA2-TP引起肺部發炎性之關聯。我們利用菸煙暴露刺激以評估肺損傷與氯化鐵誘發之急性動脈血管栓塞在四種小鼠之作用。我們以化學發光放大方式偵測活性氧數量,以西方墨點和免疫染色法探究氧化壓力、細胞凋亡、細胞自噬、發炎性細胞凋亡和發炎之分生機轉。
    研究結果指出利用氯化鐵誘發之急性動脈血管栓塞,其血栓形成時間之結果在不同基因老鼠與菸煙處理之間,並無顯著關聯性,表示各基因對於菸煙暴露時間的反應具有一致性,但菸害仍會影響血栓形成,因而利用血小板吸附模式探討不同基因鼠的結果,在無菸害暴露的老鼠裡發現TXAS+/+TP+/+鼠之血小板吸附性顯著顯著高於其他三個品系品的老鼠,未來會再加入抽煙處理的組別以繼續探討;在肺部發炎性疾病方面,由病生理結果發現,不同基因鼠與菸煙處理之間具顯著關聯,表示菸煙會藉由TXAS-TXA2-TP訊息傳遞路徑引起肺部發炎性疾病。

    Passive smoking contains second-hand smoke (SHS) and third-hand smoke (THS). SHS can be divided into mainstream smoke and sidestream smoke. Both active and passive smoking would cause cardiovascular disease (CVD) and pulmonary injuries. We used sidestream smoke and THS as our cigarette smoke (CS) model.
    Oxidants in cigarettes activate platelets consequently induce thrombus formation. It is well known that thromboxane A2 (TXA2) through its receptor—thromboxane prostanoid (TP) receptor — would activate platelets, and the overactivation of platelets or endothelial cells injury would further induce TXA2 generation. The relationship between CS and thromboxane A2 synthase (TXAS)-TXA2-TP signaling is still ambiguous.
    In order to investigate the influence of CS on TXAS-TXA2-TP signaling in thrombosis and pulmonary injuries, we used TXAS and TP gene knockout mice, inhaled sidestream and THS as whole body CS exposure model. Mice were divided into TXAS+/+TP+/+, TXAS-/-TP+/+, TXAS+/+TP-/- and TXAS-/-TP-/- treated with non-CS exposure (i.e. Control), acute cigarette smoke exposure group (ACE), prolonged cigarette smoke exposure 5 weeks group (PCE 5) and prolonged cigarette smoke exposure 8 weeks group (PCE 8) (16 groups, n=6 in each group). We evaluated the effects of CS exposure on lung injuries and FeCl3-induced thrombus formation in these four groups. We utilized the chemiluminescence amplification method to measure the amount of reactive oxygen species (ROS), western blot and immunohistochemistry to explore the underlying mechanisms including oxidative stress, apoptosis, autophagy, pyroptosis and inflammation in these animals.
    Our results showed CS exposure triggered the formation of thrombus by the index of time to occlusion (TTO). The response of CS shortened TTO was attenuated by blocking TXAS or TP receptors. CS exposure induced oxidative stress would cause pulmonary injuries including endothelial dysfunction, endoplasmic reticulum (ER) stress, inflammation, cell apoptosis, autophagy and pyroptosis.
    In conclusion, TXAS-TXA2-TP signaling plays an important role in CS induced pulmonary injury and FeCl3-induced thrombus formation.

    I. 中文摘要 4 II. ABSTRACT 6 III. ABBREVIATIONS 8 IV. INTRODUCTION 12 1. THE ENVIRONMENTAL TOBACCO SMOKE AND THIRDHAND SMOKE 12 1.1 MAINSTREAM AND SIDESTREAM SMOKE OF ENVIRONMENTAL TOBACCO SMOKE 12 1.2 THIRDHAND SMOKE 12 2. CIGARETTE SMOKE (CS) EXPOSURE INCREASES THE RISK OF THROMBOTIC CARDIOVASCULAR DISEASE 13 3. CIGARETTE SMOKE EXPOSURE LEADS TO PULMONARY INJURY 14 4. THE ASSOCIATION OF TXA2-TXAS-TP SIGNALING AND THE PATHOPHYSIOLOGY OF THORMBOSIS AND PULMONARY INJURY 15 4.1. SMOKING INCREASES PLATELET ACTIVATION AND THROMBOSIS PARTIALLY THROUGH ACTIVATING TXAS-TXA2-TP SIGNALING PATHWAY 16 4.2 SMOKING LEADS TO PULMONARY INJURY PARTIALLY THROUGH TXAS-TXA2-TP SIGNALING PATHWAY 17 5. USING TXAS OR TP GENE KNOCKOUT MICE FOR EXPLORING TXAS-TXA2-TP SIGNALING PATHWAY 17 6. AIM AND PURPOSE 18 V. MATERIALS AND METHODS 19 1. ANIMALS 19 1.1 TXAS GENE KNOCKOUT MICE 19 1.2 TP GENE KNOCKOUT MICE 19 1.3 TXAS AND TP DOUBLE KNOCKOUT MICE: 20 1.4 GROUPING 20 1.5 SURGICAL PREPARATION 21 2. FECL3-INDUCED ACUTE ARTERIAL THROMBOSIS 21 3. CIGARETTE SMOKE EXPOSURE PROTOCOL 22 4. WHOLE BLOOD REACTIVE OXYGEN SPECIES DETECTION 22 5. BRONCHOALVEOLAR LAVAGE FLUID REACTIVE OXYGEN SPECIES DETECTION 22 6. IMMUNOHISTOCHEMISTRY (IHC) 23 7. TERMINAL DEOXYNUCLEOTIDE TRANSFERASE DUTP NICK END LABELING STAIN 24 8. WESTERN BLOT 26 9. PLATELET ADHESIVENESS DETECTION 27 10. MALONDIALDEHYDE DETECTION ASSAY 28 VI. RESULTS 30 1. ACUTE ARTERIAL THROMBOSIS MODEL OF TIME TO OCCLUSION 30 2. PLATELET ADHESIVENESS DETECTION IN MESENTERIC ARTERIES 30 3. WHOLE BLOOD REATVIE OXYGEN SPECIES DETECTION 31 4. BRONCHOALVEOLAR LAVAGE FLUID OF REACTIVE OXYGEN SPECIES 31 5. MALONDIALDEHYDE CONCENTRATION DETECTION 32 6. HEMATOXYLIN AND EOSIN (H&E) STAIN 33 7. IMMUNOHISTOCHEMISTRY ANALYSIS 34 8. TERMINAL DEOXYNUCLEOTIDE TRANSFERASE DUTP NICK END LABELING STAIN 37 9. WESTERN BLOT 37 VII. DISCUSSION 43 1. CIGARETTE SMOKE EXPOSURE PROMOTE THROMBOSIS AND PULMONARY INJURIES 43 2. THE RELATIONSHIP BETWEEN CIGARETTE SMOKE EXPOSURE AND TXAS-TXA2-TP SIGNALING PATHWAY IN THROMBOSIS 43 3. THE RELATIONSHIP BETWEEN CIGARETTE SMOKE EXPOSURE AND TXAS-TXA2-TP SIGNALING IN PULMONARY INJURIES 44 VIII. CONCLUSION 49 IX. REFERENCES 50 X. FIGURES AND TABLES 55 TABLE.1 TIME TO OCCLUSION OF CAROTID ARTERY IN FOUR GENOTYPE MICE WITH FOUR DIFFERENT PERIODS OF CIGARETTE SMOKE EXPOSURE 55 FIGURE. 1 WHOLE-BODY SMOKE EXPOSURE MODEL 56 FIGURE. 2 THE CAROTID ARTERY BLOOD FLOW OF CONTROL GROUP IN THE FOUR GENOTYPES MICE 57 FIGURE. 3 THE CAROTID ARTERY BLOOD FLOW OF ACE GROUP IN THE FOUR GENOTYPES MICE 58 FIGURE. 4 THE CAROTID ARTERY BLOOD FLOW OF PCE 5 TREATED GROUP IN THE FOUR GENOTYPES MICE 59 FIGURE. 5 THE CAROTID ARTERY BLOOD FLOW OF PCE 8 TREATED GROUP IN THE FOUR GENOTYPES MICE 60 FIGURE. 6 COMPARISONS OF TIME TO OCCLUSION OF CAROTID ARTERY IN MICE BASED ON CIGARRETTE SMOKE EXPOSURE PERIODS AND GENOTYPES 61 FIGURE. 7 PLATELET ADHESIVENESS IN MESENTARIC ARTERY OF DIFFERENT GENOTYPE MICE 64 FIGURE. 8 COMPARISONS OF LUMINOL-INDUCED BLOOD H2O2 ACTIVITES IN MICE BASED ON CIGARETTE SMOKE EXPOSURE PERIODS AND GENOTYPES 65 FIGURE. 9 REACTIVE OXYGEN SPECIES LEVELS IN BRONCHOALVEOLAR LAVAGE FLUID 66 FIGURE. 10 PLASMA MDA CONCENTRATION 67 FIGURE. 11 PULMONARY ARTERY THICKNESS HISTOLOGICAL FETURE AND RELATIVE THICKNESS 68 FIGURE. 12 HISTOLOGICAL FETURE OF LUNG 71 FIGURE. 13 IMMUNOHISTOCHEMISTRY OF 4-HNE 72 FIGURE. 14 IMMUNOHISTOCHEMISTRY OF VWF 74 FIGURE. 15 IMMUNOHISTOCHEMISTRY OF IL-1Β 76 FIGURE. 16 IMMUNOHISTOCHEMISTRY OF PARP-1 78 FIGURE. 17 IMMUNOHISTOCHEMISTRY OF BECLIN-1 80 FIGURE. 18 TERMINAL DEOXYNUCLEOTIDE TRANSFERASE DUTP NICK END LABELING STAIN 82 FIGURE. 19 WESTERN BLOT OF PARP-1 84 FIGURE. 20 WESTERN BLOT OF BCL-2 AND BAX 86 FIGURE. 21 WESTERN BLOT OF LC3 Β 87 FIGURE. 22 WESTERN BLOT OF BECLIN-1 88 FIGURE. 23 WESTERN BLOT OF 4-HNE 89 FIGURE. 24 WESTERN BLOT OF VWF 90 FIGURE. 25 WESTERN BLOT OF NF-ΚB 91 FIGURE. 26 WESTERN BLOT OF ATF-6 92 FIGURE. 27 WESTERN BLOT OF P-JNK 93

    Alavanja, M. C., et al. (2001). "Lung cancer risk and red meat consumption among Iowa women." Lung Cancer 34(1): 37-46.

    Ambrose, J. A. and R. S. Barua (2004). "The pathophysiology of cigarette smoking and cardiovascular disease: an update." Journal of the American College of Cardiology 43(10): 1731-1737.

    Awji, E. G., et al. (2015). "Correlation of Cigarette Smoke-Induced Pulmonary Inflammation and Emphysema in C3H and C57Bl/6 Mice." Toxicological Sciences: kfv108.

    Barua, R. S. and J. A. Ambrose (2013). "Mechanisms of coronary thrombosis in cigarette smoke exposure." Arteriosclerosis, thrombosis, and vascular biology 33(7): 1460-1467.

    Bayat, H., et al. (2008). "Activation of Thromboxane Receptor Upregulates Interleukin (IL)-1β–Induced VCAM-1 Expression Through JNK Signaling." Arteriosclerosis, thrombosis, and vascular biology 28(1): 127-134.

    Blann, A. D., et al. (1998). "The influence of acute smoking on leucocytes, platelets and the endothelium." Atherosclerosis 141(1): 133-139.

    Brook, R. D., et al. (2004). "Air pollution and cardiovascular disease A statement for healthcare professionals from the expert panel on population and prevention science of the American Heart Association." Circulation 109(21): 2655-2671.

    Capra, V., et al. (2014). "Impact of vascular thromboxane prostanoid receptor activation on hemostasis, thrombosis, oxidative stress, and inflammation." Journal of Thrombosis and Haemostasis 12(2): 126-137.

    Chalmers, G. W., et al. (2001). "Smoking and airway inflammation in patients with mild asthma." CHEST Journal 120(6): 1917-1922.

    Control, C. f. D. and Prevention (2010). How tobacco smoke causes disease: The biology and behavioral basis for smoking-attributable disease: A report of the surgeon general, Centers for Disease Control and Prevention (US).

    Ellinsworth, D. C., et al. (2014). "Interactions between thromboxane A2, thromboxane/prostaglandin (TP) receptors, and endothelium-derived hyperpolarization." Cardiovascular research 102(1): 9-16.

    Ferrante, G., et al. (2013). "Third-hand smoke exposure and health hazards in children." Monaldi Arch Chest Dis 79(1): 38-43.

    Furlong, H. C., et al. (2015). "Cigarette Smoke Exposure Triggers the Autophagic Cascade via Activation of the AMPK Pathway in Mice." Biology of reproduction 93(4): 93.

    Gao, Y., et al. (2000). "Reversal of angiogenesis in vitro, induction of apoptosis, and inhibition of AKT phosphorylation in endothelial cells by thromboxane A2." Circulation research 87(9): 739-745.

    Ge, G.-Z., et al. (2015). "Tobacco carcinogen NNK-induced lung cancer animal models and associated carcinogenic mechanisms." Acta biochimica et biophysica Sinica 47(7): 477-487.

    Giannarelli, C., et al. (2010). "Prostanoid and TP-receptors in atherothrombosis: is there a role for their antagonism?" Thrombosis & Haemostasis 104(5): 949.

    Gombault, A., et al. (2015). "NLRP6 inflammasome is a critical player in pulmonary inflammation to cigarette smoke in mice." Revue des Maladies Respiratoires 32(3): 333.

    Health, U. D. o. and H. Services (2010). "How tobacco smoke causes disease: the biology and behavioral basis for smoking-attributable disease: a report of the Surgeon General." Atlanta, GA: US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health 2.

    Huang, R.-Y., et al. (2013). "Thromboxane A2 receptor α promotes tumor growth through an autoregulatory feedback pathway." Journal of molecular cell biology 5(6): 380-390.

    Iorio-Morin, C., et al. (2012). "Thromboxane A2 modulates cisplatin-induced apoptosis through a Siva1-dependent mechanism." Cell Death & Differentiation 19(8): 1347-1357.

    Jaimes, E. A., et al. (2004). "Stable compounds of cigarette smoke induce endothelial superoxide anion production via NADPH oxidase activation." Arteriosclerosis, thrombosis, and vascular biology 24(6): 1031-1036.

    Kuang, P.-P., et al. (2002). "NF-κB induced by IL-1β inhibits elastin transcription and myofibroblast phenotype." American Journal of Physiology-Cell Physiology 283(1): C58-C65.

    Law, M. R. and A. K. Hackshaw (1996). "Environmental tobacco smoke." British medical bulletin 52(1): 22-34.

    Lesault, P. F., et al. (2011). "Daily administration of the TP receptor antagonist terutroban improved endothelial function in high‐cardiovascular‐risk patients with atherosclerosis." British journal of clinical pharmacology 71(6): 844-851.

    Li, P. C., et al. (2013). "Dietary Monascus adlay supplements facilitate suppression of cigarette smoke-induced pulmonary endoplasmic reticulum stress, autophagy, apoptosis and emphysema-related PLGF in the rat." Food Chem 136(2): 765-774.

    Martinon, F. and J. Tschopp (2005). "NLRs join TLRs as innate sensors of pathogens." Trends in immunology 26(8): 447-454.

    Matt, G. E. (2013). "Thirdhand tobacco smoke: emerging evidence and arguments for a multidisciplinary research agenda." Environmental Health Perspectives, 119, 1218-1226, 10/1/2011.

    Milne, G. L., et al. (2007). "Quantification of F2‐Isoprostanes in Biological Fluids and Tissues as a Measure of Oxidant Stress." Methods in enzymology 433: 113-126.

    Morita, H., et al. (2005). "Only two-week smoking cessation improves platelet aggregability and intraplatelet redox imbalance of long-term smokers." Journal of the American College of Cardiology 45(4): 589-594.

    Nakahata, N. (2008). "Thromboxane A 2: physiology/pathophysiology, cellular signal transduction and pharmacology." Pharmacology & therapeutics 118(1): 18-35.

    Qiu, X., et al. (2015). "The Role Of Il-6 And Et-1 In Pulmonary Physiology And Endothelial Dysfunction During Early Exposure To Tobacco Smoke." Am J Respir Crit Care Med 191: A4690.

    Rashid, H.-O., et al. (2015). "ER stress: Autophagy induction, inhibition, and selection." Autophagy(just-accepted): 00-00.

    Robinson, M. A., et al. (2003). "Differential effects of sodium nitroprusside and hydralazine in a rat model of topical FeCl3-induced carotid artery thrombosis." Thrombosis Research 111(1-2): 59-64.

    Rubenstein, D., et al. (2004). "Differences between mainstream and sidestream cigarette smoke extracts and nicotine in the activation of platelets under static and flow conditions." Circulation 109(1): 78-83.

    Ruta, A., et al. (2009). "Nuclear localization of active matrix metalloproteinase-2 in cigarette smoke-exposed apoptotic endothelial cells." Experimental lung research 35(1): 59-75.

    Ryter, S. W., et al. (2011). "Deadly triplex: smoke, autophagy and apoptosis." Autophagy 7(4): 436-437.

    Santilli, F., et al. (2015). "Oxidative stress drivers and modulators in obesity and cardiovascular disease: from biomarkers to therapeutic approach." Current medicinal chemistry 22(5): 582-595.

    Santilli, F., et al. (2011). "TP receptor activation and inhibition in atherothrombosis: the paradigm of diabetes mellitus." Internal and emergency medicine 6(3): 203-212.

    Schönthal, A. H. (2012). "Endoplasmic reticulum stress: its role in disease and novel prospects for therapy." Scientifica 2012.

    Tagawa, Y., et al. (2008). "Induction of apoptosis by cigarette smoke via ROS-dependent endoplasmic reticulum stress and CCAAT/enhancer-binding protein-homologous protein (CHOP)." Free Radical Biology and Medicine 45(1): 50-59.

    Taylor, A. E., et al. (1992). "Environmental tobacco smoke and cardiovascular disease. A position paper from the Council on Cardiopulmonary and Critical Care, American Heart Association." Circulation 86(2): 699-702.

    Thomas, D. W., et al. (1998). "Coagulation defects and altered hemodynamic responses in mice lacking receptors for thromboxane A2." Journal of Clinical Investigation 102(11): 1994.

    Wilson, S. J., et al. (2009). "Activation-dependent stabilization of the human thromboxane receptor: role of reactive oxygen species." Journal of lipid research 50(6): 1047-1056.

    Winickoff, J. P., et al. (2009). "Beliefs about the health effects of “thirdhand” smoke and home smoking bans." Pediatrics 123(1): e74-e79.

    Xu, Y., et al. (2013). "Live imaging and single-cell analysis reveal differential dynamics of autophagy and apoptosis." Autophagy 9(9): 1418-1430.

    Yu, I.-S., et al. (2004). "TXAS-deleted mice exhibit normal thrombopoiesis, defective hemostasis, and resistance to arachidonate-induced death." Blood 104(1): 135-142.

    Zhang, M., et al. (2011). "Activation of NAD (P) H oxidases by thromboxane A2 receptor uncouples endothelial nitric oxide synthase." Arteriosclerosis, thrombosis, and vascular biology 31(1): 125-132.

    下載圖示
    QR CODE