簡易檢索 / 詳目顯示

研究生: 王俊超
Chun-Chao Wang
論文名稱: 壹、經由N-溴代丁二醯亞胺的催化進行Michael addition反應合成具有生物活性分子之前驅物 貳、無催化劑的條件下鄰苯二胺與1,2-二羰基化合物進行縮合脫水反應
指導教授: 姚清發
Yao, Ching-Fa
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 102
中文關鍵詞: N-溴代丁二醯亞胺縮合脫水反應生物活性分子
論文種類: 學術論文
相關次數: 點閱:138下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的第壹部分討論使用便宜、容易取得的市售試劑N-溴代丁二醯亞胺(N-bromosuccinimide)來催化共軛硝基乙烯(nitrostyrene)與吲哚(indole)的Michael addition反應,產物為具有生物活性分子之前驅物。此外,我們也使用二烯酮(dienone)與吲哚(indole)在N-溴代丁二醯亞胺(N-bromosuccinimide)的催化下,進行Michael addition反應,其最終產物為雜環的七環化合物。

    本論文第貳部分報導一個簡易、快速、高產率的方法,來製備具有生物活性骨架的化合物。如果使用甲醇當作溶劑,在室溫的狀況下,鄰苯二胺(o-phenylenediamine)可與1,2-二羰基化合物(1,2-dicarbonyl compounds)進行縮合脫水反應。除了可當作一般的化學研究用途外,此類產物亦可作為具有發光特性的材料,大大地增加此產物的應用性。

    The thesis work of the present finding is divided in to two chapters. The first chapter deals with the C-alkylation of indoles with nitroalkenes in the presence of a cheap and commercial available N-bromosuccinimide as a catalyst. The generality of this method is demonstrated by synthesizing an array of diverse 3-substituted indole derivatives by the reaction of β-nitrostyrenes with various indoles and vice versa. Simple reaction conditions accompanied by good yields of indolyl-nitroalkanes are the merits of this methodology.
    The second part of this thesis described the synthesis of quinoxiline derivatives which includes a catalyst free condensation of o-phenylenediamine with 1,2-dicarbonyl compounds in methanol at room temperature. This method is simple, quicker and produce high yield of the products. The applicability of the present methodology is further extended by performing the reaction with a wide variety of o-phenylenediamines and 1,2-dicarbonyl compounds to produce corresponding quinoxaline derivatives in excellent yield.

    頁碼 中文摘要 I 英文摘要 II 縮寫對照表 III 壹、 經由N-溴代丁二醯亞胺的催化進行Michael addition反應合成具有生物活性分子之前驅物 1 前言 1 研究構想 16 實驗結果與討論 17 1. N-溴代丁二醯亞胺催化吲哚(indole)與共軛硝基苯乙烯(-nitrostyrene)的反應 17 2. N-溴代丁二醯亞胺催化吲哚(indole)與二烯酮(dienone)的 反應 28 結論 37 貳、 無催化劑的條件下鄰苯二胺與1,2-二羰基化合物進行縮合脫水反應 38 前言 38 研究構想 56 實驗結果與討論 57 1. 鄰苯二胺(o-phenylenediamine)與1,2-二羰基化合物(1,2-dicarbonyl compounds)在室溫下反應來合成喹喔啉(quinoxaline)類化合物之探討 57 2. o-phenylenediamine與1,2-dicarbonyl compound在微波下的反應 73 結論 77 參、實驗部分 78 1. 一般實驗方法 78 2. 實驗程序與光譜資料 80 2.1 NBS催化共軛硝基乙烯與吲哚之Michael addition反應 80 一般實驗步驟 80 2.2 NBS催化鄰苯二胺與二苯乙二酮之縮合脫水反應 89 一般實驗步驟 89 肆、參考文獻 98 伍、1H與13C光譜附圖 102

    1. Sundberg, R. J. Indoles; Academic Press, London, 1996 and references therein.
    2. Lin, C.; Hsu, J.; Sastry, M. N. V.; Fang, H.; Tu, Z.; Liu, J.-T.; Yao, C.-F. Tetrahedron 2005, 61, 11751.
    3. Greig, N. H.; Pei, X. F.; Soncrant, T. T.; Ingram, D. K.; Brossi, A. Med. Res. Rev. 1995, 15, 3.
    4. Ono, N. The Nitro Group in Organic Synthesis; Wiley-VCH: New York, 2001.
    5. An, L.-T.; Zou, J.-P.; Zhang, L.-L.; Zhang, Y. Tetrahedron Lett. 2007, 48, 4297.
    6. Bartoli, G.; Bosco, M.; Giuli, S.; Giuliani, A.; Lucarelli, L.; Marcantoni, E.; Sambri, L.; Torregiani, E. J. Org. Chem. 2005, 70, 1941.
    7. (a) Herrera, R. P.; Sgarzani, V.; Bernardi, L.; Ricci, A. Angew. Chem., Int. Ed. 2005, 44, 6576; (b) Fleming, E. M.; McCabe, T.; Connon, S. J. Tetrahedron Lett. 2006, 47, 7037.
    8. Zhuang, W.; Hazell, R. G.; Jorgensen, K. A. Org. Biomol. Chem. 2005, 3, 2566.
    9. Singh, P. K.; Bisai, A.; Singh, V. K. Tetrahedron Lett. 2007, 48, 1127.
    10. (a) Jia, Y.-X.; Zhu, S.-F.; Yang, Y.; Zhou, Q.-L. J. Org. Chem. 2006, 71, 75; (b) Lu, S.-F.; Du, D.-M.; Xu, J. Org. Lett. 2006, 8, 2115; (c) Liu, H.; Xu, J.; Du, D.-M. Org. Lett. 2007, 9, 4725.
    11. Itoh, K.; Kishimoto, S. New J. Chem. 2000, 24, 347.
    12. (a) Murugan, R.; Karthikeyan, M.; Perumal, P. T.; Reddy, B. S. R. Tetrahedron 2005, 61, 12275; (b) Azizi, N.; Arynasab, F.; Saidi, M. R. Org. Biomol. Chem. 2006, 4, 4275.
    13. (a) Djerassi, C. Chem. Rev. 1948, 43, 271; (b) Filler, R. Chem. Rev. 1963, 63, 21; (c) Sharma, V. B.; Jain, S. L.; Sain, B. J. Mol. Catal. A 2005, 227, 47; (d) Amijs, C. H. M.; van Klink, G. P. M.; van Koten, G. Green Chem. 2003, 5, 470; (e) Sarma, J. A. R. P.; Nagaraju, A. J. Chem. Soc., Perkin Trans. 2, 2000, 1113; (f) Thakur, V. V.; Talluri, S. K.; Sudalai, A. Org. Lett. 2003, 5, 861; (g) Hajra, S.; Sinha, D.; Bhowmick, M. J. Org. Chem. 2007, 72, 1852.
    14. Mahboobi, S.; Wiegrebe, W.; Popp, A. J. Nat. Prod. 1999, 62, 577.
    15. Mahboobi, S.; Popp, A.; Burgemeister, T.; Schollmeyer, D. Tetrahedron: Asymmetry 1998, 9, 2369.
    16. Pritchard, R. G.; Stoodley, R. J.; Yuen, W.-H. Org. Biomol. Chem. 2005, 3, 162.
    17. (a) Reddy, A. V.; Ravinder, K.; Goud, T. V.; Krishnaiah, P.; Raju, T. V.; Venkateswarlu, Y. Tetrahedron Lett. 2003, 44, 6257; (b) Tabatabaeian, K.; Mamaghani, M.; Mahmoodi, N. O.; Khorshidi, A. J. Mol. Catal. A 2007, 270, 112; (c) Huang, Z.-H.; Zou, J.-P.; Jiang, W.-Q. Tetrahedron Lett. 2006, 47, 7965; (d) Bandini, M.; Cozzi, P. G.; Giacomini, M.; Melchiorre, P.; Selva, S.; Umani-Ronchi, A. J. Org. Chem. 2002, 67, 3700.
    18. Conard, C. R.; Dolliver, M. A. Org. Synth. 1943, 2, 167.
    19. Arcadi, A.; Bianchi, G.; Chiarini, M.; D’Anniballe, G.; Marinelli, F. Synlett. 2004, 6, 944.
    20. (a) Dell, A.; William, D. H.; Morris, H. R.; Smith, G. A.; Feeney, J.; Roberts, G. C. K. J. Am. Chem. Soc. 1975, 97, 2497; (b) Bailly, C.; Echepare, S.; Gago, F.; Waring, M. Anti-Cancer Drug Des. 1999, 15, 291; (c) Sato, S.; Shiratori, O.; Katagiri, K. J. Antibiot. 1967, 20, 270; (d) Kim, Y. B.; Kim, Y. H.; Park, J. Y.; Kim, S. K. Bioorg. Med. Chem. Lett. 2004, 14, 541; (e) He, W.; Myers, M. R.; Hanney, B.; Spada, A. P.; Bilder, G.; Galzcinski, H.; Amin, D.; Needle, S.; Page, K.; Jayyosi, Z.; Perrone, M. Bioorg. Med. Chem. Lett. 2003, 13, 3097.
    21. (a) Sarges, R.; Howard, H. R.; Browne, R. G.; Lebel, L. A.; Seymour, P. A.; Koe, B. K. J. Med. Chem. 1990, 33, 2240; (b) Ali, M. M.; Ismail, M. M. F.; El-Gaby, M. S. A.; Zahran, M. A.; Ammar, Y. A. Molecules 2000, 5, 864.
    22. Sakata, G.; Makino, K.; Kurasawa, Y. Heterocycles 1988, 27, 2481.
    23. (a) Sato, N. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds; Pergamon: Oxford, 1996; Vol. 6, Ch. 6.03; for more recent references see; (b) Seitz, L. E.; Suling, W. J.; Reynolds, R. C. J. Med. Chem. 2002, 45, 5604; (c) Gazit, A.; App, H.; McMahon, G.; Chen, J.; Levitzki, A.; Bohmer, F. D. J. Med. Chem. 1996, 39, 2170.
    24. Brock, E. D.; Lewis, D. M.; Yousaf, T. I.; Harper, H. H. (The Procter and Gamble Company, USA) WO 9951688, 1999.
    25. (a) Dailey, S.; Feast, J. W.; Peace, R. J.; Saga, R. C.; Till, S.; Wood, E. L. J. Mater. Chem. 2001, 11, 2238; (b) O’Brien, D.; Weaver, M. S.; Lidzey, D. G.; Bradley, D. D. C. Appl. Phys. Lett. 1996, 69, 881.
    26. Justin Thomas, K. R.; Velusamy, M.; Lin, J. T.; Chuen, C.-H.; Tao, Y.-A. Chem. Mater. 2005, 17, 1860.
    27. (a) Mizuno, T.; Wei, W.-H.; Eller, L. R.; Sessler, J. L. J. Am. Chem. Soc. 2002, 124, 1134; (b) Elwahy, A. H. M. Tetrahedron 2000, 56, 897.
    28. Crossley, J. C.; Johnston, L. A. Chem. Commun. 2002, 1122.
    29. (a) Zhao, Z.; Wisnoski, D. D.; Wolkenberg, S. E.; Leister, W. H.; Wang, Y.; Lindsley, C. W. Tetrahedron Lett. 2004, 45, 4873; (b) Kim, S. Y.; Park, K. H.; Chung, Y. K. Chem. Commun. 2005, 1321.
    30. Wu, Z.; Ede, N. J. Tetrahedron Lett. 2001, 42, 8115.
    31. Heravi, M. M.; Bakhtiari, K.; Bamoharram, F. F.; Tehrani, M. H. Monatsh. Chem. 2007, 138, 465.
    32. Raw, S. A.; Wilfred, C. D.; Taylor, R. J. K. Org. Biomol. Chem. 2004, 2, 788.
    33. More, S. V.; Sastry, M. N. V.; Yao, C.-F. Green Chem. 2006, 8, 91.
    34. (a) More, S. V.; Sastry, M. N. V.; Wang, C.-C.; Yao, C.-F. Tetrahedron Lett. 2005, 46, 6345; (b) Bhosale, R. S.; Sarda, S. R.; Ardhapure, S. S.; Jadhav, W. N.; Bhusare, S. R.; Pawar, R. P. Tetrahedron Lett. 2005, 46, 7183.
    35. (a) Taylor, E. C.; Maryanoff, C. A.; Skotnicki, J. S. J. Org. Chem. 1980, 45, 2512; (b) Antoniotti, S.; Dunach, E. Tetrahedron Lett. 2002, 43, 3971.
    36. Cho, C. S.; Oh, S. G. Tetrahedron Lett. 2006, 47, 5633.
    37. Venkatesh, C.; Singh, B.; Mahata, P. K., Ila, H.; Junjappa, H. Org. Lett. 2005, 7, 2169.
    38. Xekoukoulotakis, N. P.; Hadjiantoniou-Maroulis, C. P.; Maroulis, A. J. Tetrahedron Lett. 2000, 41, 10299.
    39. Aparicio, D.; Attanasi, O. A.; Filippone, P.; Ignacio, R.; Lillini, S.; Mantellini, F.; Palacios, F.; de los Santos, J. M. J. Org. Chem. 2006, 71, 5897.
    40. (a) VOGEL’s Textbook of Practical Organic Chemistry, 5th ed., p 1190; (b) Brown, D. J. Quinoxaline: supplements II. In The Chemistry of Heterocyclic Compounds; Taylor, E. C., Wipf, P., Eds.; John Wiley and Sons: New Jersey, 2004.
    41. (a) McNab, H. J. Chem. Soc., Chem. Commun. 1980, 422; (b) McNab, H. J. Chem. Soc., Perkin Trans. 1 1982, 1941.
    42. (a) Coin, C.; Le Boisselier, V.; Favier, I.; Postel, M.; Dunach, E. Eur. J. Org. Chem. 2001, 735; (b) Antoniotti, S.; Dunach, E. Chem. Commun. 2001, 24, 2566; (c) Santosusso, T. M.; Swern, D. J. Org. Chem. 1975, 40, 2764.
    43. (a) Zassinovich, G.; Mestroni, G.; Gladiali, S. Chem. Rev. 1992, 92, 1051; (b) Noyori, R.; Hashiguchi, S.; Acc. Chem. Res. 1997, 30, 97; (c) Naota, T.; Takaya, H.; Murahashi, S.-I. Chem. Rev. 1998, 98, 2599; (d) Palmer, M.; Wills, M. Tetrahedron: Asymmetry 1999, 10, 2045.
    44. (a) Oskooie, H. A.; Heravi, M. M.; Bakhtiari, K.; Taheri, S. Monatsh. Chem. 2007, 138, 875; (b) Das, B.; Venkateswarlu, K.; Suneel, K.; Majhi, A. Tetrahedron Lett. 2007, 48, 5371; (c) Heravi, M. M.; Tehrani, M. H.; Bakhtiari, K.; Oskooie, H. A. Catal. Commun. 2007, 8, 1341; (d) Huang, T.-K.; Wang, R.; Shi, L.; Lu, X.-X. Catal. Commun. 2008, 9, 1143; (e) Darabi, H. R.; Mohandessi, S.; Aghapoor, K.; Mohsenzadeh, F. Catal. Commun. 2007, 8, 389.
    45. (a) List, B. Acc. Chem. Res. 2004, 37, 548; (b) List, B.; Lerner, R. A.; Barbas III, C. F. J. Am. Chem. Soc. 2000, 122, 2395.
    46. Zhou, J. F.; Gong, G. X.; Shi, K. B.; Zhi, S. J. Chin. Chem. Lett. 2009, xxx, xxx.
    47. (a) Rideout, D. C.; Breslow, R. L. J. Am. Chem. Soc. 1980, 102, 7816; (b) Reichardt, C. Solvent and solvent Effects in Organic Chemistry; Verlag Chemie: Weinheim, 1979; pp 1−139.
    48. (a) Rispens, T.; Engberts, J. B. F. N. J. Org. Chem. 2002, 67, 7369; (b) Blokzijl, W.; Engberts, J. B. F. N.; Blandamer, M. J. J. Am. Chem. Soc. 1990, 112, 1197; (c) Blokzijl, W.; Engberts, J. B. F. N. J. Am. Chem. Soc. 1991, 113, 5440; (d) Blokzijl, W.; Engberts, J. B. F. N. Angew. Chem., Int. Ed. Engl. 1993, 32, 1545.
    49. Blake, J. F.; Jorgensen, W. L. J. Am. Chem. Soc. 1991, 113, 7430.
    50. Chen, C.-T.; Wei, Y.; Lin, J.-S.; Moturu, M. V. R. K.; Chao, W.-S.; Tao, Y.-T.; Chien, C.-H. J. Am. Chem. Soc. 2006, 128, 10992.
    51. (a) Garg, N. K.; Sarpong, R.; Stoltz, B. M. J. Am. Chem. Soc. 2002, 124, 13179; (b) Millich, F.; Becker, E. I. J. Org. Chem. 1958, 23, 1096; (c) Sessler, J. L.; Cho, D.-G.; Lynch, V. J. Am. Chem. Soc. 2006, 128, 16518.
    52. Dallinger, D.; Kappe, C. O. Chem. Rev. 2007, 107, 2563.
    53. Hayes, B. L. Microwave Synthesis: Chemistry at the Speed of Light; CEM Publishing: Matthews, NC, 2002.

    無法下載圖示 本全文未授權公開
    QR CODE