簡易檢索 / 詳目顯示

研究生: 邱俞鈞
CHIU, Yu-Chun
論文名稱: 芳香基表面修飾之奈米金粒子與其在氣體感測器之應用
Preparation of alkylaryl-modified gold nanoparticles and their applications to organic gas sensors
指導教授: 洪偉修
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 84
中文關鍵詞: 奈米金粒子重氮鹽有機氣體感測器
英文關鍵詞: gold nanoparticles, diazonium salts, organic gas sensor
論文種類: 學術論文
相關次數: 點閱:216下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要藉由兩種不同反應條件的兩相合成法,將不同碳鏈
    的芳香基重氮鹽修飾至奈米金粒子表面,得到四個不同的新型材料,
    分別為New 6C-Au、New 8C-Au、New 10C-Au、Old 10C-Au,藉由
    1H-NMR、FT-IR、UV-Vis、TEM、Raman、XRD、EDS 儀器和技術,
    鑑定及分析材料的結構及組成,證實製程成功將芳香基重氮鹽修飾至
    奈米金粒子表面。
    將製備完成的材料應用於有機氣體感測器,利用質量式(QCM)及
    阻抗式(CR)兩種氣體感測器,進行有機氣體感測器應用,可以有效的
    應用於n-Butyl acetate、n-Butanol、n-Octane、Toluene 氣體感測。由
    QCM 的感測結果得知,材料對有機氣體的選擇性為BA  Octane 
    Toluene  Butanol,而CR 感測結果顯示,材料的選擇性則為: 極性氣
    體分子 非極性氣體分子,本論文由材料結構的差異探討氣體選擇性
    的影響。

    In this thesis, 4-alkylaryl layers were modified onto the gold nanoparticles via reduction of their diazonium salts. Two types of modified gold nanoparticles were obtained with different reaction conditions in the two-phase synthesis. As a results, there were four types of gold nanoparticles (i.e. New 6C-Au, New 8C-Au, New 10C-Au and Old 10C-Au) modified with 4-alkylaryls which were different in the alkyl
    chain length and reaction conditions. The composition of reaction precursors and gold nanoparticles were characterized with various techniques, e.g. 1H-NMR, FT-IR, UV-Vis, TEM, Raman, XRD and EDS.
    The resulting gold nanoparticles coated with 4-alkylaryl layers were utilized in application of sensing organic gas compounds. Materials coated onto both chemiresistor (CR) and quartz crystal microbalance (QCM) transducers as chemical sensors for the detection of airborne
    volatile organic compounds (VOCs). The VOCs studied in the work were n-butyl acetate, n-butanol, n-octane and toluene. The sequence of QCM selectivity for these gold nanopartilces are BA Octane Toluene Butanol. Nevertheless, the CR sensor is more selective to polar gas than
    nonpolar gas. Our results indicate that the sensitivity of gas compound is strongly related to the chemical structures of coated molecules.

    摘要 I Abstract II 謝誌 III 目錄 IV 圖目錄 VII 表目錄 IX 第一章 緒論 1-1 前言 1 1-2 芳香基重氮鹽(Aryl diazonium salts)簡介 3 1-3 奈米微粒基本理論 3 1-4 奈米材料結構介紹 5 1-5 阻抗式化學感測器(CR)之氣體感測理論 7 1-6 質量式化學感測器(QCM)之氣體感測理論 11 1-6-1 壓電效應(Piezoelectrics Effect) 11 1-6-2 振盪頻率與吸附質量關係 13 第二章 文獻回顧 2-1 芳香基重氮鹽的發展及應用 16 2-2 兩相合成法 20 2-3 自發反應還原法 23 第三章 實驗流程及儀器介紹 3-1 實驗藥品 25 3-2 實驗儀器 27 3-3 實驗流程 29 3-4 實驗步驟 30 3-5 實驗原理 35 3-5-1 核磁共振儀 35 3-5-2 傅立葉紅外線光譜儀 35 3-5-3 紫外光-可見光光譜儀 36 3-5-4 粉末X 光繞射儀 37 3-5-5 穿透式電子顯微鏡 37 3-5-6 能量分散式X 光光譜儀 38 3-5-7 拉曼光譜 41 第四章 結果與討論 4-1 Ligand 之1H-NMR 結構鑑定 46 4-2 Ligand 之FT-IR 結構鑑定 49 4-3 四個不同材料的UV-Vis 光譜分析 51 4-4 四個不同材料的TEM 圖譜分析 53 4-5 四個不同材料的XRD 光譜分析 58 4-6 四個不同材料的拉曼光譜分析 61 4-7 四個不同材料的EDS 光譜分析 64 4-8 有機氣體感測器的實驗數據分析 67 第五章 結論 78 參考文獻 80

    1. Crooks, R. M.; Zhao, M.; Sun, L.; Chechik, V.; Yeung, L. K., Dendrimer-
    Encapsulated Metal Nanoparticles: Synthesis, Characterization, and
    Applications to Catalysis. Accounts of Chemical Research 2000, 34 (3), 181-190.
    2. Schmid, G.; Hornyak, G. L., Metal clusters - new perspectives in future
    nanoelectronics. Current Opinion in Solid State and Materials Science 1997, 2
    (2), 204-212.
    3. Wohltjen, H.; Snow, A. W., Colloidal Metal−Insulator−Metal Ensemble
    Chemiresistor Sensor. Analytical Chemistry 1998, 70 (14), 2856-2859.
    4. L. Feldheim, D.; D. Keating, C., Self-assembly of single electron transistors
    and related devices. Chemical Society Reviews 1998, 27 (1), 1-12.
    5. Neiman, B.; Grushka, E.; Lev, O., Use of Gold Nanoparticles To Enhance
    Capillary Electrophoresis. Analytical Chemistry 2001, 73 (21), 5220-5227.
    6. Martin, C. R.; Mitchell, D. T., Peer Reviewed: Nanomaterials in Analytical
    Chemistry. Analytical Chemistry 1998, 70 (9), 322A-327A.
    7. Buriak, J. M., Organometallic Chemistry on Silicon and Germanium Surfaces.
    Chemical Reviews 2002, 102 (5), 1271-1308.
    8. Ulman, A., Formation and Structure of Self-Assembled Monolayers.
    Chemical Reviews 1996, 96 (4), 1533-1554.
    9. Downard, A. J., Electrochemically Assisted Covalent Modification of Carbon
    Electrodes. Electroanalysis 2000, 12 (14), 1085-1096.
    10. Palacin, S.; Bureau, C.; Charlier, J.; Deniau, G.; Mouanda, B.; Viel, P.,
    Molecule-to-Metal Bonds: Electrografting Polymers on Conducting Surfaces.
    ChemPhysChem 2004, 5 (10), 1468-1481.
    11. Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M., Self-
    Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology.
    Chemical Reviews 2005, 105 (4), 1103-1170.
    12. Vericat, C.; Vela, M. E.; Benitez, G.; Carro, P.; Salvarezza, R. C., Selfassembled
    monolayers of thiols and dithiols on gold: new challenges for a wellknown
    system. Chemical Society Reviews 2010, 39 (5), 1805-1834.
    13. Pinson, J.; Podvorica, F., Attachment of organic layers to conductive or
    semiconductive surfaces by reduction of diazonium salts. Chemical Society
    Reviews 2005, 34 (5), 429-439.
    14. Chehimi, M. M.; Turmine, M.; Mahouche-Chergui, S.; Gam-Derouich, S.;
    Salmi, Z., On the interfacial chemistry of aryl diazonium compounds in polymer
    science
    81
    Chemical Papers 2012, 66 (5), 369–391.
    15. Kariuki, J. K.; McDermott, M. T., Nucleation and Growth of Functionalized
    Aryl Films on Graphite Electrodes. Langmuir 1999, 15 (19), 6534-6540.
    16. Kariuki, J. K.; McDermott, M. T., Formation of Multilayers on Glassy Carbon
    Electrodes via the Reduction of Diazonium Salts. Langmuir 2001, 17 (19), 5947-
    5951.
    17. Bernard, M.-C.; Chaussé, A.; Cabet-Deliry, E.; Chehimi, M. M.; Pinson, J.;
    Podvorica, F.; Vautrin-Ul, C., Organic Layers Bonded to Industrial, Coinage, and
    Noble Metals through Electrochemical Reduction of Aryldiazonium Salts.
    Chemistry of Materials 2003, 15 (18), 3450-3462.
    18. Shewchuk, D. M.; McDermott, M. T., Comparison of Diazonium Salt Derived
    and Thiol Derived Nitrobenzene Layers on Gold. Langmuir 2009, 25 (8), 4556-
    4563.
    19. Kubo, R. J., Non-trivial properties of small metal particles were predicted
    due to a discreteness of electron spectra. Phys. Soc. Jpn. 1962, 17, 975-981.
    20. Neugebauer, C. A.; Webb, M. B., Electrical Conduction Mechanism in
    Ultrathin, Evaporated Metal Films. J. Appl. Phys 1962, 33, 74-82.
    21. Vossmeyer, T.; Guse, B.; Besnard, I.; Bauer, R. E.; Müllen, K.; Yasuda, A.,
    Gold Nanoparticle/Polyphenylene Dendrimer Composite Films: Preparation
    and Vapor-Sensing Properties. Advanced Materials 2002, 14 (3), 238-242.
    22. Krasteva, N.; Guse, B.; Besnard, I.; Yasuda, A.; Vossmeyer, T., Gold
    nanoparticle/PPI-dendrimer based chemiresistors: Vapor-sensing properties as
    a function of the dendrimer size. Sensors and Actuators B: Chemical 2003, 92
    (1–2), 137-143.
    23. Evans, S. D.; Johnson, S. R.; Cheng, Y. L.; Shen, T., Vapour sensing using
    hybrid organic-inorganic nanostructured materials. Journal of Materials
    Chemistry 2000, 10 (1), 183-188.
    24. Zhang, H.-L.; Evans, S. D.; Henderson, J. R.; REMiles; Shen, T.-H., Vapour
    sensing using surface functionalized gold nanoparticles. Nanotechnology 2002,
    13, 439–444.
    25. Han, L.; Daniel, D. R.; Maye, M. M.; Zhong, C.-J., Core−Shell Nanostructured
    Nanoparticle Films as Chemically Sensitive Interfaces. Analytical Chemistry
    2001, 73 (18), 4441-4449.
    26. Buttry, D. A.; Ward, M. D., Measurement of interfacial processes at
    electrode surfaces with the electrochemical quartz crystal microbalance.
    Chemical Reviews 1992, 92 (6), 1355-1379.
    27. Sauerbrey, G., Verwendung von Schwingquarzen zur Wägung dünner
    Schichten und zur Mikrowägung. Zeitschrift für Physik 1959, 155 (2), 206–222.
    82
    28. Lu, C.; Czanderna, A. W., Applications of piezoelectric quartz crystal
    microbalances. Elsevier 1984.
    29. Ghodbane, O.; Chamoulaud, G.; Bélanger, D., Chemical reactivity of 4-
    bromophenyl modified glassy carbon electrode. Electrochemistry
    Communications 2004, 6 (3), 254-258.
    30. Betelu, S.; Vautrin-Ul, C.; Chaussé, A., Novel 4-carboxyphenyl-grafted
    screen-printed electrode for trace Cu(II) determination. Electrochemistry
    Communications 2009, 11 (2), 383-386.
    31. Combellas, C.; Delamar, M.; Kanoufi, F.; Pinson, J.; Podvorica, F. I.,
    Spontaneous Grafting of Iron Surfaces by Reduction of Aryldiazonium Salts in
    Acidic or Neutral Aqueous Solution. Application to the Protection of Iron
    against Corrosion. Chemistry of Materials 2005, 17 (15), 3968-3975.
    32. Wang, J.; Firestone, M. A.; Auciello, O.; Carlisle, J. A., Surface
    Functionalization of Ultrananocrystalline Diamond Films by Electrochemical
    Reduction of Aryldiazonium Salts. Langmuir 2004, 20 (26), 11450-11456.
    33. Bahr, J. L.; Yang, J.; Kosynkin, D. V.; Bronikowski, M. J.; Smalley, R. E.; Tour, J.
    M., Functionalization of Carbon Nanotubes by Electrochemical Reduction of
    Aryl Diazonium Salts: A Bucky Paper Electrode. Journal of the American
    Chemical Society 2001, 123 (27), 6536-6542.
    34. Pan, Y.; Tong, B.; Shi, J.; Zhao, W.; Shen, J.; Zhi, J.; Dong, Y., Fabrication,
    Characterization, and Optoelectronic Properties of Layer-by-Layer Films Based
    on Terpyridine-Modified MWCNTs and Ruthenium(III) Ions. The Journal of
    Physical Chemistry C 2010, 114 (17), 8040-8047.
    35. Mahouche Chergui, S.; Abbas, N.; Matrab, T.; Turmine, M.; Bon Nguyen, E.;
    Losno, R.; Pinson, J.; Chehimi, M. M., Uptake of copper ions by carbon
    fiber/polymer hybrids prepared by tandem diazonium salt chemistry and in situ
    atom transfer radical polymerization. Carbon 2010, 48 (7), 2106-2111.
    36. Gooding, J. J., Advances in Interfacial Design for Electrochemical Biosensors
    and Sensors: Aryl Diazonium Salts for Modifying Carbon and Metal Electrodes.
    Electroanalysis 2008, 20 (6), 573-582.
    37. Mahouche-Chergui, S.; Gam-Derouich, S.; Mangeney, C.; Chehimi, M. M.,
    Aryl diazonium salts: a new class of coupling agents for bonding polymers,
    biomacromolecules and nanoparticles to surfaces. Chemical Society Reviews
    2011, 40 (7), 4143-4166.
    38. Delamar, M.; Hitmi, R.; Pinson, J.; Saveant, J. M., Covalent modification of
    carbon surfaces by grafting of functionalized aryl radicals produced from
    electrochemical reduction of diazonium salts. Journal of the American Chemical
    Society 1992, 114 (14), 5883-5884.
    83
    39. Mirkhalaf, F.; Graves, J. E., Nanostructured electrocatalysts immobilised on
    electrode surfaces and organic film templates. Chemical Papers 2012, 66 (5),
    472-483.
    40. Jiang, D.-e.; Sumpter, B. G.; Dai, S., Structure and Bonding between an Aryl
    Group and Metal Surfaces. Journal of the American Chemical Society 2006, 128
    (18), 6030-6031.
    41. Boukerma, K.; Chehimi, M. M.; Pinson, J.; Blomfield, C., X-ray Photoelectron
    Spectroscopy Evidence for the Covalent Bond between an Iron Surface and Aryl
    Groups Attached by the Electrochemical Reduction of Diazonium Salts.
    Langmuir 2003, 19 (15), 6333-6335.
    42. Dyke, C. A.; Tour, J. M., Unbundled and Highly Functionalized Carbon
    Nanotubes from Aqueous Reactions. Nano Letters 2003, 3 (9), 1215-1218.
    43. Braga, N. A.; Cairo, C. A. A.; Almeida, E. C.; Baldan, M. R.; Ferreiraa, N. G.,
    From micro to nanocrystalline transition in the diamond formation on porous
    pure titanium. Diamond and Related Materials 2008, 17 (11), 1891-1896.
    44. Liu, J.; Zubiri, M. R. i.; Vigolo, B.; Dossot, M.; Humbert, B.; Fort, Y.; McRae,
    E., Microwave-Assisted Functionalization of Single-Wall Carbon Nanotubes
    Through Diazonium. J. Nanosci. Nanotechnol. 2007, 7, 3519–3523
    45. Adenier, A.; Cabet-Deliry, E.; Lalot, T.; Pinson, J.; Podvorica, F., Attachment
    of Polymers to Organic Moieties Covalently Bonded to Iron Surfaces. Chemistry
    of Materials 2002, 14 (11), 4576-4585.
    46. Wang, G.-J.; Huang, S.-Z.; Wang, Y.; Liu, L.; Qiu, J.; Li, Y., Synthesis of watersoluble
    single-walled carbon nanotubes by RAFT polymerization. Polymer 2007,
    48 (3), 728-733.
    47. Santos, L. s. M.; Ghilane, J.; Fave, C.; Lacaze, P.-C.; Randriamahazaka, H.;
    Abrantes, L. M.; Lacroix, J.-C., Electrografting Polyaniline on Carbon through the
    Electroreduction of Diazonium Salts and the Electrochemical Polymerization of
    Aniline. The Journal of Physical Chemistry C 2008, 112 (41), 16103-16109.
    48. Mirkhalaf, F.; Paprotny, J.; Schiffrin, D. J., Synthesis of Metal Nanoparticles
    Stabilized by Metal−Carbon Bonds. Journal of the American Chemical Society
    2006, 128 (23), 7400-7401.
    49. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R., Synthesis of
    thiol-derivatised gold nanoparticles in a two-phase Liquid-Liquid system.
    Journal of the Chemical Society, Chemical Communications 1994, (7), 801-802.
    50. Kumar, V. K. R.; Gopidas, K. R., Synthesis and Characterization of Gold-
    Nanoparticle-Cored Dendrimers Stabilized by Metal–Carbon Bonds. Chemistry
    – An Asian Journal 2010, 5 (4), 887-896.
    51. Laurentius, L.; Stoyanov, S. R.; Gusarov, S.; Kovalenko, A.; Du, R.; Lopinski, G.
    84
    P.; McDermott, M. T., Diazonium-Derived Aryl Films on Gold Nanoparticles:
    Evidence for a Carbon–Gold Covalent Bond. ACS Nano 2011, 5 (5), 4219-4227.
    52. RAMAN, C. V.; KRISHNAN, K. S., A New Type of Secondary Radiation. Nature
    1928, 121, 501-502
    53. Loudon, R., The Raman effect in crystals. The Journal of Chemical Physics
    1964, 13 (52), 423-482.
    54. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J., Raman spectra of pyridine
    adsorbed at a silver electrode. Chemical Physics Letters 1974, 26 (2), 163-166.

    下載圖示
    QR CODE