簡易檢索 / 詳目顯示

研究生: 林建男
Jian-Nan Lin
論文名稱: 季風槽及熱帶氣旋活動模擬於WRF 30公里解析度區域氣候模式
Simulation of Monsoon Trough and Tropical Storms Activities in the WRF 30-km Regional Climate Model
指導教授: 鄒治華
Tsou, Chih-Hua
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 44
中文關鍵詞: 區域氣候模式季風槽熱帶氣旋
英文關鍵詞: regional climate model, monsoon trough, tropical cyclone
論文種類: 學術論文
相關次數: 點閱:146下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 西北太平洋是熱帶氣旋活躍的地區,熱帶氣旋摸擬及研究是重要熱門的議題。然而早期模擬以低解析度全球模式為主要工具,模擬出來之熱帶氣旋有暖心結構及環流系統,但中心強度不太理想。故本研究考慮了海陸分佈和地形以及中、東太平洋、印度洋之影響,採用Weather Research and Forecasting (WRF)
    30公里之解析度,針對2000~2009年間之夏、秋兩季進行區域氣候模擬,並設計了NWP(100°E~180°,5°S~35°N)、NP(100°E~120°W,10°S~40°N)、IONWP (50°E~180°,20°S~40°N)三組不同範圍之實驗,來探討西北太平洋地區位於東亞季風區,而東亞季風、太平洋副熱帶高壓及太平洋海溫分佈是影響熱帶氣旋生成及活動之因素。並偏重在秋季大尺度環流及熱帶氣旋的探討。
    在NCEP觀測資可發現,大尺度環流影響了熱帶氣旋之生成及軌跡。而在模式中均有掌握大尺度環流及熱帶氣旋活動之關係。但在NWP及NP模擬季風槽有過強之現象,而使副高位置東移。使秋季熱帶氣旋生成數量、位置及軌跡較不完全符合JTWC資料。然而IONWP則在季槽風模擬中要接近於觀測,在大尺度環流掌握度較佳。在秋季熱帶氣旋之模擬中生成數量、位置及軌跡均模擬良好。模式在提高解析度之下,三組模式均有達到一定的強度,但仍稍弱於JTWC資料。可見模擬過程加入印度洋、南亞陸塊及青康藏高原,模式有掌握大尺度環流之特徵,並影響及掌握秋季熱帶氣旋之活動。

    Monsoon trough is one of the major factors that influence the climate and typhoon activities in the west North Pacific Ocean. However, the structure of monsoon trough and tropical storms are often poorly simulated by the Global Climate Models (GCMs) due to their coarse resolutions. In this study, Weather Research and Forecasting (WRF) Regional Climate Model (RCM) at 30-km resolution is adopted to simulate the climatological feature of monsoon trough and tropical storms from 2000 to 2009. Numerical experiments with three different domains including NWP (105°E-180°, 0°-40°N), NP(105°E-120°W, 5°S-45°N), and IONWP (45°E-180°, 20°S-40°N) are conducted to investigate the relative contributions from tropical East Pacific Ocean, Indian Ocean and land-sea contrast to the monsoon trough.
    The results show that the gross features of large-scale circulations are well captured by all three experiments. Nevertheless, monsoon troughs are too strong, while subtropical highs are too weak in NWP and NP experiments. This causes the low-level convergence region simulated in NWP and NP experiments to the east of the observation. With the inclusion of Indian Ocean and land-sea contrast, the strength of monsoon trough, subtropical high, and low-level convergence are well represented in IONWP experiment. These large-scale circulations are closely related to the typhoon activities in all three experiments.

    中文摘要……….……………………………………………………………………...I 英文摘要……….………………………………….…………………………………II 致謝…………………………………………………………………………............III 目錄……………………………………………………………….………………… IV 圖表說明……………………………………………………………….......................V 第一章 前言…………………………………………………………………………1 第二章 區域氣候模式介紹和實驗設計……………………………………………4 2.1 WRF模式簡介…………………………………………………………………4 2.2 模式參數設定………………………………………………………………….4 2.3 模式實驗設計………………………………………………………………….6 第三章 觀測資料……………………………………………………………………8 3.1 初始及側邊界資料…………………………………………………………….8 3.2 熱帶氣旋資料………………………………………………………………….8 第四章 WRF區域氣候模式之模擬氣候場及秋季熱帶氣旋結果分析及比較…9 4.1 夏季大氣環流氣候平均場摸擬結果……………………………………........9 4.2秋季大氣環流氣候平均場摸擬結果……………………………………......12. 第五章 秋季熱帶氣旋氣候模擬結果之分析…………………………………….17 5.1 模式颱風之動力及熱力條件門檻…………………………….......................17 5.2 秋季熱帶氣旋生成點及生成個數之模擬…………………………....... …...19 5.3秋季熱帶氣旋軌跡模擬…………………………………………………..….21 5.4秋季熱帶氣旋生命史及強度分析……………………………………………22 第六章 結論與討論…………………………………………………………………………………….25 參考文獻………………………………………………………………………………………………………29 附圖表………………………………………………………………………………………………………….33

    Bengtsson, L., Hodges, K. I. and Esch, M., 2007: Tropical cyclones in a T159 resolution global climate model: comparison with observations and re-analyses. Tellus A, 59: 396–416

    Camargo, S. J., A. G. Barnston, and S. E. Zebiak, 2005: A statistical assessment of tropical cyclone activity in atmospheric general circulation models. Tellus, 57A, 589-604.

    Camargo, S. J., and A. H. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 2996–3006.

    Chan, J. C. L., 2005: Interannual and interdecadal variations of tropical cyclone activity over the western North Pacific, Meterorol. Atmos. Phys., 89, 143- 152.

    Chan, Johnny C. L., Kin Sik Liu, 2004: Global Warming and Western North Pacific Typhoon Activity from an Observational Perspective. J. Climate,17, 4590–4602.

    Chan, J. C. L., 2000: Tropical cyclone activity over the Western North Pacific Associated with La Nina event. J. Climate., 13, 2960-2972.

    Chen, T.-C., S.-P. Weng, N. Yamazaki, and S. Kiehne, 1998: Interannual variation in the tropical cyclone formation over the western North Pacific. Mon. Wea. Rev., 126, 1080-1090.

    Chen, T.C., S.Y. Wang, and M.C. Yen, 2006: Interannual Variation of the Tropical Cyclone Activity over the Western North Pacific. J. Climate., 19, 5709–5720.

    Chia H. H and C. F. Ropelewski, 2002: The interannual variability in the genesis location of tropical cyclones in the Northwest Pacific. J. Climate, 15, 2934-2944.

    Chou, C. 2003: Land–sea heating contrast in an idealized Asian summer monsoon. Clim Dyn, 21, 11-25.
    Dyer, A. J., and B. B. Hicks, 1970: Flux‐gradient relationships in the constant flux layer, Quart. J. Roy. Meteor. Soc., 96, 715-721.

    Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 46, 3077-3107.

    Emanuel, K. A., 1999: Thermodynamic control of hurricane intensity. Nature, 401, 665-669.

    Grell, G. A., and D.Devenyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29(14), Article 1693.

    Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nuez, and W. M. Gray, 2001:The recent increase in Atlantic hurricane activity:Causes and implicatios. Science., 293, 474-479.

    Gray W. M., 1979: Hurricanes: Their formation, structure and likely role in the general circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155-218.

    Gray W.M, 1975: Tropical cyclone genesis. Dept. of Atmospheric Science Paper 234, Colorado State University, Fort Collins, CO, 121pp

    Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6), J. Korean Meteor. Soc., 42, 129-151.

    Hong, Song-You, Yign Noh, Jimy Dudhia, 2006: A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Wea. Rev., 134, 2318–2341

    Hong, Song-You, Jimy Dudhia, Shu-Hua Chen, 2004: A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation. Mon. Wea. Rev., 132, 103–120.

    Lacis, A. A., and J. E. Hansen, 1974: A Parameterization for the Absorption of Solar Radiation in the Earth's Atmosphere. J. Atmos. Sci., 31, 118-133.

    Huang-Hsiung HSU, Yi-Chiang YU, Wen-Shung KAU, Wu-Ron HSU, Wen-Yih SUN and Chi-Hua TSOU: “Simulation of the 1998 East Asian Summer Monsoon using the Purdue Regional Model”. J.Meteor.Soc.Japan, Vol. 82, 1715-1733. (2004) .

    Knutson T. R., J. J. Sirutis, S. T. Garner, I. M. Held, and R. E. Tuleya, 2007: Simulation of the recent multidecadal increase of atlantic hurricane activity using an 18-km-grid regional model. Bull. Amer. Meteror. Soc. 88, 1549-1565.

    Matsuura, T., M. Yumoto, and S. Iizuka, 2003: A mechanism of interdecadal variability of tropical cyclone activity over the western North Pacific. Climate Dyn., 21, 105–117.

    Lee, C.-S., K. K. W. Cheung, J. S. N. Hui, and R. L. Elsberry, 2008:Mesoscale features associated with tropical cyclone formations in the western North Pacific. Mon. Wea. Rev., 136, 2006–2022

    Michiaki Yumoto and Tomonori Matsuura: “Interdecadal Variability of Tropical Cyclone Activity in the Western North Pacific”. J.Meteor.Soc.Japan, Vol. 79, 23-35. (2001)

    Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough (1997), Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res., 102(D14), 16,663–16,682,

    Paulson, C. A., 1970: The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer. J. Appl. Meteor., 9, 857-861.

    Ueda, H., and T. Yasunari (1998) Role of Warming over the Tibetan Platean in Early Onset of the Summer Monsoon over the Bay of Bengal and the South China Sea. J. Meteorol. Soc. Japan, 76, 1-12.

    Vitart F., J. L. Anderson, and W. F. Stern, 1997: Simulation of the interannual variability of tropical storm frequency in an ensemble of GCM integrations. J. Climate, 10, 745-760

    Vitart, Frédéric, David Anderson, Tim Stockdale, 2003: Seasonal Forecasting of Tropical Cyclone Landfall over Mozambique. J. Climate, 16, 3932–3945.

    Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate., 15, 1643-1658.

    Webb, E. K., 1970: Profile relationships: The log-linear range, and extension to strong stability, Quart. J. Roy. Meteor. Soc., 96, 67-90.

    Webster, P. J. (1987) The variable and interactive monsoon. In: J. S. Fein and P. Stephend (eds), Monsoons. Wiley, New York, 384pp.

    Walsh, K. J. E., M. Fiorino, C. W. Landsea, and K. L. McInnes, 2007: Objectively determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses. J. Climate, 20, 2307-2314

    Webster, P. J., G. J. Holland, J. A. Curry, and H.-R. Chang, 2005:Change in Tropical Number, Duration, and Intensity in a Warming Environmen. Science, 308,1753-1754.

    Young, J.A. (1987) Physics of Monsoon: The current view. In: Fein and Stephens (eds), Monsoon. John Willey & Sons, New York, pp.211-243

    下載圖示
    QR CODE