研究生: |
陳濠森 Chen, Hao-Sen |
---|---|
論文名稱: |
蓬萊草蜥(Takydromus stejnegeri)色型間的被捕食風險與存活率差異 Predation risk and survival rate differences among color morphs of Stejneger's grass lizard (Takydromus stejnegeri) |
指導教授: |
林思民
Lin, Si-Min |
口試委員: |
林思民
Lin, Si-Min 林展蔚 Lin, Jhan-Wei 何熙誠 Ho, Hsi-Cheng |
口試日期: | 2024/07/03 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 52 |
中文關鍵詞: | 體色多型性 、捕食 、草蜥屬 、權衡 、視覺訊號 |
英文關鍵詞: | color polymorphism, predation, Takydromus, trade-off, visual signal |
研究方法: | 校正數位影像分析 、 反射光譜分析 、 存活率估算 、 捉放法 |
DOI URL: | http://doi.org/10.6345/NTNU202401105 |
論文種類: | 學術論文 |
相關次數: | 點閱:54 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
動物色彩是一個迷人的研究領域,隱含了多種選擇壓力之間的平衡。理解這些力量如何塑造動物顏色信號在演化和生態學中至關重要。在這項研究中,我們研究了蓬萊草蜥(Takydromus stejnegeri)體色訊號的被捕食成本和配偶偏好之間的權衡。該蜥蜴展示了季節和個體間的色型變異,在非繁殖季,大多數個體是純棕色的,而在繁殖季,許多個體會展現出綠色的側腹和背部的白色條紋。我們將其劃分為四種主要的色型:綠色白線型、綠色無白線型、棕色白線型和棕色無白線型。先前的配偶選擇實驗指出雌性蜥蜴偏好同色的雄性,而綠色的雄性則對棕色的雌性有偏好。我們所提出的假說是:蓬萊草蜥的色型變異由複雜的交配系統維持,而體色和白線特徵的季節性盛行率則是由捕食壓力驅動的。我們使用光譜儀和數位影像分析來評估各色型在季節性背景下的辨識度和可偵測性,並使用Cormack-Jolly-Seber模型和四年的捕捉-標記-再捕捉數據來估算各色型的存活率。結果顯示,在非繁殖季,相較於綠色型,棕色型在背景中的辨識度和可偵測性較低,而繁殖季時的情況則相反。存活率估計結果與之相應,顯示在繁殖季時,棕色無白線型存活率最低,而綠色白線型的存活率最高。此結果指出儘管兩種側面顏色都受益於交配系統,但棕色型因為承受相對較高的捕食風險,而綠色形態因其隱蔽性具有額外的存活優勢,使得綠色型成為繁殖季的主要色型。此外,我們發現背部的白色條紋在蜥蜴的身體上形成高強度邊緣的圖案,且有白線的色型比無白線的色型具有更高的存活率,這些白線可能具有破壞性或迷惑性著色的功能。整體而言,我們的研究強調了性選擇和自然選擇作用力在不同生態季節中的動態互動,並展示了這些演化過程如何塑造動物色彩。
Animal coloration is a fascinating field that reveals the balance among multiple selection forces. Understanding how these forces shape animal color signals is crucial in evolutionary biology and ecology. In this study, we examined the trade-off between predation cost and mate preference in visual signal of a color polymorphic lizard, Takydromus stejnegeri, which exhibits both seasonal and individual color variations. During the non-breeding season, most individuals are plain brown, while in the breeding season, many develop green flanks and white stripes. We identified four main morphs: green flanks with or without white stripes, and brown flanks with or without white stripes. Previous mating experiments reveal that females prefer males with the same flank coloration, and green males show a preference for brown females. We hypothesize that the complex mating system maintains these color variants, while predation pressure drives the seasonal prevalence of flank colorations and white stripes. Using spectrometry and digital image analysis, we assess morph discrimination and detectability against seasonal backgrounds and employed Cormack-Jolly-Seber model with 4-year capture-mark-recapture data to estimated survival rates. Our findings showed that brown morphs are less discriminable and detectable than green morphs during the non-breeding season, while the pattern reversing in the breeding season. Estimation of survival rates confirmed that the brown-without-stripes morph has the lowest survival rates, and the green-with-stripes morph has the highest during the breeding season. This suggests that although both flank colorations benefit from the mating system, brown morphs incur relatively higher predation risk, while green morphs have an additional survival advantage due to their concealment, resulting in the dominance of green morphs during the breeding season. Additionally, dorsal white stripes create a high-intensity edge pattern on lizard’s body, and show higher survival rates for striped morphs than non-striped morphs. This indicated that the white stripes may serve as disruptive or distractive coloration. Overall, our study highlights the dynamic interactions between sexual and natural selection forces across ecological seasons, illustrating how these evolutionary processes shape animal color design.
Andersson, M. (1994). Sexual selection (Vol. 72). Princeton University Press.
Barnett, J. B., Cuthill, I. C., & Scott-Samuel, N. E. (2017). Distance-dependent pattern blending can camouflage salient aposematic signals. Proceedings of the Royal Society B: Biological Sciences, 284(1858), 20170128. https://doi.org/10.1098/rspb.2017.0128
Borges, R., Khan, I., Johnson, W. E., Gilbert, M. T. P., Zhang, G., Jarvis, E. D., O’Brien, S. J., & Antunes, A. (2015). Gene loss, adaptive evolution and the co-evolution of plumage coloration genes with opsins in birds. BMC Genomics, 16(1), 751. https://doi.org/10.1186/s12864-015-1924-3
Brock, K. M., McTavish, E. J., & Edwards, D. L. (2022). Color Polymorphism is a Driver of Diversification in the Lizard Family Lacertidae. Systematic Biology, 71(1), 24–39. https://doi.org/10.1093/sysbio/syab046
Cavagnaro, J., Ossip-Drahos, A. G., & Martins, E. P. (2023). Fashion or function? Relaxed selection and stasis are key features of the evolution of stripes, bands and collars in Sceloporus lizards (Squamata: Phrynosomatidae). Biological Journal of the Linnean Society, 139(3), 214–230. https://doi.org/10.1093/biolinnean/blad051
Caves, E. M., Brandley, N. C., & Johnsen, S. (2018). Visual Acuity and the Evolution of Signals. Trends in Ecology & Evolution, 33(5), 358–372. https://doi.org/10.1016/j.tree.2018.03.001
Caves, E. M., Fernández-Juricic, E., & Kelley, L. A. (2024). Ecological and morphological correlates of visual acuity in birds. The Journal of Experimental Biology, 227(2), jeb246063. https://doi.org/10.1242/jeb.246063
Caves, E. M., & Johnsen, S. (2018). AcuityView: An r package for portraying the effects of visual acuity on scenes observed by an animal. Methods in Ecology and Evolution, 9(3), 793–797. https://doi.org/10.1111/2041-210X.12911
Chen, C.-W., Whiting, M. J., Yang, E.-C., & Lin, S.-M. (2021). Do I stay or do I go? Shifts in perch use by lizards during morning twilight suggest anticipatory behaviour. Biology Letters, 17(10), 20210388. https://doi.org/10.1098/rsbl.2021.0388
Cuthill, I. C. (2019). Camouflage. Journal of Zoology, 308(2), 75–92. https://doi.org/10.1111/jzo.12682
Darwin, C. (1859). On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life (1st ed.). London: John Murray.
Darwin, C. (1871). The Descent of Man and Selection in Relation to Sex. (1st ed.). London: John Murray.
Endler, J. A. (1978). A Predator’s View of Animal Color Patterns. In M. K. Hecht, W. C. Steere, & B. Wallace (Eds.), Evolutionary Biology (pp. 319–364). Springer US. https://doi.org/10.1007/978-1-4615-6956-5_5
Endler, J. A. (2006). Disruptive and cryptic coloration. Proceedings of the Royal Society B: Biological Sciences, 273(1600), 2425. https://doi.org/10.1098/rspb.2006.3650
Fisher, R. A. (1930). The genetical theory of natural selection. Oxford: Clarendon Press. https://scholar.google.com/scholar?cluster=5898391993427892689&hl=en&oi=scholarr
Ford, E. B. (1945). Polymorphism. Biological Reviews, 20(2), 73–88. https://doi.org/10.1111/j.1469-185X.1945.tb00315.x
Giurfa, M., Vorobyev, M., Brandt, R., Posner, B., & Menzel, R. (1997). Discrimination of coloured stimuli by honeybees: Alternative use of achromatic and chromatic signals. Journal of Comparative Physiology A, 180(3), 235–243. https://doi.org/10.1007/s003590050044
Gray, S. M., & McKinnon, J. S. (2007). Linking color polymorphism maintenance and speciation. Trends in Ecology & Evolution, 22(2), 71–79. https://doi.org/10.1016/j.tree.2006.10.005
Hart, N. (2003). Vision in the peafowl (Aves: Pavo cristatus). The Journal of Experimental Biology, 205, 3925–3935. https://doi.org/10.1242/jeb.205.24.3925
Helversen, B. von, Schooler, L. J., & Czienskowski, U. (2013). Are Stripes Beneficial? Dazzle Camouflage Influences Perceived Speed and Hit Rates. PLOS ONE, 8(4), e61173. https://doi.org/10.1371/journal.pone.0061173
Hughes, A. E., Magor-Elliott, R. S., & Stevens, M. (2015). The role of stripe orientation in target capture success. Frontiers in Zoology, 12(1), 17. https://doi.org/10.1186/s12983-015-0110-4
Hughes, A. E., Troscianko, J., & Stevens, M. (2014). Motion dazzle and the effects of target patterning on capture success. BMC Evolutionary Biology, 14(1), 201. https://doi.org/10.1186/s12862-014-0201-4
Hurtado-Gonzales, J. L., & Uy, J. A. C. (2009). Alternative mating strategies may favour the persistence of a genetically based colour polymorphism in a pentamorphic fish. Animal Behaviour, 77(5), 1187–1194. https://doi.org/10.1016/j.anbehav.2008.12.032
Jian, W.-X. (2021). Color variation and sexual selection in Stejneger’s grass lizard (Takydromus stejnegeri). [Master’s Thesis, National Taiwan Normal University].
Jones, C. D., & Osorio, D. (2004). Discrimination of oriented visual textures by poultry chicks. Vision Research, 44(1), 83–89. https://doi.org/10.1016/j.visres.2003.08.014
Karpestam, E., Merilaita, S., & Forsman, A. (2013). Detection experiments with humans implicate visual predation as a driver of colour polymorphism dynamics in pygmy grasshoppers. BMC Ecology, 13(1), 17. https://doi.org/10.1186/1472-6785-13-17
Kodandaramaiah, U., Palathingal, S., Bindu Kurup, G., & Murali, G. (2020). What makes motion dazzle markings effective against predation? Behavioral Ecology, 31(1), 43–53. https://doi.org/10.1093/beheco/arz154
Lerch, B. A., & Servedio, M. R. (2023). Predation drives complex eco-evolutionary dynamics in sexually selected traits. PLOS Biology, 21(4), e3002059. https://doi.org/10.1371/journal.pbio.3002059
Lin, J.-W. (2018). The costs of reproduction: The relationship among reproduction, ectoparasite load and survival in a dense population of grass lizard Takydromus viridipunctatus. [Doctoral Thesis, National Taiwan Normal University].
Lin, J.-W., Chen, Y.-R., Li, T.-W., Shaner, P.-J. L., & Lin, S.-M. (2020). Long-term monitoring reveals invariant clutch size and unequal reproductive costs between sexes in a subtropical lacertid lizard. Zoological Letters, 6(1), 1. https://doi.org/10.1186/s40851-019-0152-0
Lin, J.-W., Chen, Y.-R., Wang, Y.-H., Hung, K.-C., & Lin, S.-M. (2017). Tail regeneration after autotomy revives survival: A case from a long-term monitored lizard population under avian predation. Proceedings of the Royal Society B: Biological Sciences, 284(1847), 20162538. https://doi.org/10.1098/rspb.2016.2538
Lin, S.-M., Chen, C. A., & Lue, K.-Y. (2002). Molecular phylogeny and biogeography of the grass lizards genus Takydromus (Reptilia: Lacertidae) of East Asia. Molecular Phylogenetics and Evolution, 22(2), 276–288. https://doi.org/10.1006/mpev.2001.1059
Lind, O., Karlsson, S., & Kelber, A. (2013). Brightness Discrimination in Budgerigars (Melopsittacus undulatus). PLOS ONE, 8(1), e54650. https://doi.org/10.1371/journal.pone.0054650
Maia, R., Eliason, C. M., Bitton, P.-P., Doucet, S. M., & Shawkey, M. D. (2013). pavo: An R package for the analysis, visualization and organization of spectral data. Methods in Ecology and Evolution, 4(10), 906–913. https://doi.org/10.1111/2041-210X.12069
Murali, G., & Kodandaramaiah, U. (2016). Deceived by stripes: Conspicuous patterning on vital anterior body parts can redirect predatory strikes to expendable posterior organs. Royal Society Open Science, 3(6), 160057. https://doi.org/10.1098/rsos.160057
Murali, G., Merilaita, S., & Kodandaramaiah, U. (2018). Grab my tail: Evolution of dazzle stripes and colourful tails in lizards. Journal of Evolutionary Biology, 31(11), 1675–1688. https://doi.org/10.1111/jeb.13364
Nagy, A. L. (1999). Interactions between achromatic and chromatic mechanisms in visual search. Vision Research, 39(19), 3253–3266. https://doi.org/10.1016/s0042-6989(99)00009-7
Nagy, A. L., & Sanchez, R. R. (1992). Chromaticity and Luminance as Coding Dimensions in Visual Search. Human Factors, 34(5), 601-614. https://journals.sagepub.com/doi/abs/10.1177/001872089203400507
Nagy, A. L., & Winterbottom, M. (2000). The achromatic mechanism and mechanisms tuned to chromaticity and luminance in visual search. JOSA A, 17(3), 369–379. https://doi.org/10.1364/JOSAA.17.000369
Ödeen, A., & Håstad, O. (2013). The phylogenetic distribution of ultraviolet sensitivity in birds. BMC Evolutionary Biology, 13(1), 36. https://doi.org/10.1186/1471-2148-13-36
Olsson, P., Lind, O., & Kelber, A. (2018). Chromatic and achromatic vision: Parameter choice and limitations for reliable model predictions. Behavioral Ecology, 29(2), 273–282. https://doi.org/10.1093/beheco/arx133
Osorio, D., Miklósi, A., & Gonda, Zs. (1999). Visual Ecology and Perception of Coloration Patterns by Domestic Chicks. Evolutionary Ecology, 13(7), 673–689. https://doi.org/10.1023/A:1011059715610
Robledo-Ospina, L. E., Escobar-Sarria, F., Troscianko, J., & Rao, D. (2017). Two ways to hide: Predator and prey perspectives of disruptive coloration and background matching in jumping spiders. Biological Journal of the Linnean Society, 122(4), 752–764. https://doi.org/10.1093/biolinnean/blx108
Roulin, A. (2004). The evolution, maintenance and adaptive function of genetic colour polymorphism in birds. Biological Reviews, 79(4), 815–848. https://doi.org/10.1017/S1464793104006487
Rowe, L., & Rundle, H. D. (2021). The Alignment of Natural and Sexual Selection. Annual Review of Ecology, Evolution, and Systematics, 52(1), 499–517. https://doi.org/10.1146/annurev-ecolsys-012021-033324
Scott-Samuel, N. E., Baddeley, R., Palmer, C. E., & Cuthill, I. C. (2011). Dazzle Camouflage Affects Speed Perception. PLOS ONE, 6(6), e20233. https://doi.org/10.1371/journal.pone.0020233
Scott-Samuel, N. E., Caro, T., Matchette, S. R., & Cuthill, I. C. (2023). Dazzle: Surface patterns that impede interception. Biological Journal of the Linnean Society, 140(4), 485–503. https://doi.org/10.1093/biolinnean/blad075
Siddiqi, A., Cronin, T. W., Loew, E. R., Vorobyev, M., & Summers, K. (2004). Interspecific and intraspecific views of color signals in the strawberry poison frog Dendrobates pumilio. Journal of Experimental Biology, 207(14), 2471–2485. https://doi.org/10.1242/jeb.01047
Stevens, M., & Merilaita, S. (2008). Defining disruptive coloration and distinguishing its functions. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1516), 481–488. https://doi.org/10.1098/rstb.2008.0216
Stevens, M., Yule, D. H., & Ruxton, G. D. (2008). Dazzle coloration and prey movement. Proceedings of the Royal Society B: Biological Sciences, 275(1651), 2639–2643. https://doi.org/10.1098/rspb.2008.0877
Stobbe, N., & Schaefer, H. M. (2008). Enhancement of chromatic contrast increases predation risk for striped butterflies. Proceedings of the Royal Society B: Biological Sciences, 275(1642), 1535–1541. https://doi.org/10.1098/rspb.2008.0209
Stuart-Fox, D., Aulsebrook, A., Rankin, K. J., Dong, C. M., & McLean, C. A. (2021). Convergence and divergence in lizard colour polymorphisms. Biological Reviews, 96(1), 289–309. https://doi.org/10.1111/brv.12656
Thurman, T. J., & Seymoure, B. M. (2016). A bird’s eye view of two mimetic tropical butterflies: Coloration matches predator’s sensitivity. Journal of Zoology, 298(3), 159–168. https://doi.org/10.1111/jzo.12305
Troscianko, J., & Stevens, M. (2015). Image calibration and analysis toolbox – a free software suite for objectively measuring reflectance, colour and pattern. Methods in Ecology and Evolution, 6(11), 1320–1331. https://doi.org/10.1111/2041-210X.12439
Tseng et al. (2016). Sequences and expression of cone opsin genes in Takydromus species. [Master’s Thesis, National Taiwan Normal University].
Tseng, S.-P., Li, S.-H., Hsieh, C.-H., Wang, H.-Y., & Lin, S.-M. (2014). Influence of gene flow on divergence dating – implications for the speciation history of Takydromus grass lizards. Molecular Ecology, 23(19), 4770–4784. https://doi.org/10.1111/mec.12889
Tseng, W.-H., Lin, J.-W., Lou, C.-H., Lee, K.-H., Wu, L.-S., Wang, T.-Y., Wang, F.-Y., Irschick, D. J., & Lin, S.-M. (2018). Opsin gene expression regulated by testosterone level in a sexually dimorphic lizard. Scientific Reports, 8(1), 16055. https://doi.org/10.1038/s41598-018-34284-z
Uetz, P., P. Freed, R. Aguilar, F. Reyes, and J. Hošek (eds.). 2024. The Reptile
Database. <https://reptile-database.reptarium.cz/>. Accessed (29), May, 2024
van den Berg, C. P., Condon, N. D., Conradsen, C., White, T. E., & Cheney, K. L. (2024). Automated workflows using Quantitative Colour Pattern Analysis (QCPA): A guide to batch processing and downstream data analysis. Evolutionary Ecology. https://doi.org/10.1007/s10682-024-10291-7
van den Berg, C. P., Endler, J. A., & Cheney, K. L. (2023). Signal detectability and boldness are not the same: The function of defensive coloration in nudibranchs is distance-dependent. Proceedings of the Royal Society B: Biological Sciences, 290(2003), 20231160. https://doi.org/10.1098/rspb.2023.1160
van den Berg, C. P., Troscianko, J., Endler, J. A., Marshall, N. J., & Cheney, K. L. (2020). Quantitative Colour Pattern Analysis (QCPA): A comprehensive framework for the analysis of colour patterns in nature. Methods in Ecology and Evolution, 11(2), 316–332. https://doi.org/10.1111/2041-210X.13328
van der Kooi, C. J., & Kelber, A. (2022). Achromatic Cues Are Important for Flower Visibility to Hawkmoths and Other Insects. Frontiers in Ecology and Evolution, 10. https://doi.org/10.3389/fevo.2022.819436
Vorobyev, M., & Osorio, D. (1998). Receptor noise as a determinant of colour thresholds. Proceedings. Biological Sciences, 265(1394), 351–358. https://doi.org/10.1098/rspb.1998.0302
Wellenreuther, M., Svensson, E. I., & Hansson, B. (2014). Sexual selection and genetic colour polymorphisms in animals. Molecular Ecology, 23(22), 5398–5414. https://doi.org/10.1111/mec.12935
White, G. C., & Burnham, K. P. (1999). Program MARK: Survival estimation from populations of marked animals. Bird Study, 46(sup1), S120–S139. https://doi.org/10.1080/00063659909477239
White, T. E., Latty, T., & Umbers, K. D. L. (2022). The exploitation of sexual signals by predators: A meta-analysis. Proceedings of the Royal Society B: Biological Sciences, 289(1976), 20220444. https://doi.org/10.1098/rspb.2022.0444
Zuk, M., & Kolluru, G. R. (1998). Exploitation of Sexual Signals by Predators and Parasitoids. The Quarterly Review of Biology, 73(4), 415–438. https://doi.org/10.1086/420412