簡易檢索 / 詳目顯示

研究生: 張均豪
Jyun-Hao Jhang
論文名稱: 以溶膠凝膠法製備氧化鋅奈米結構於半導體型氣體感測器之應用
Preparation of ZnO nanostructure for MOS gas sensor by sol-gel method
指導教授: 程金保
Cheng, Chin-Pao
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 55
中文關鍵詞: 氧化鋅氣體感測二氧化氮溶膠凝膠法
論文種類: 學術論文
相關次數: 點閱:470下載:48
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    本研究分別以異丙醇及甲醇為溶劑,利用溶膠凝膠法配合旋轉塗佈的方式在Al/SiO2/Si基板上製備ZnO薄膜作為氣體感測材料,探討以不同溶劑製備出之不同微結構對於CO及NO2之感測特性,並使用SEM及XRD觀察在不同熱處理條件下之表面型貌及結晶結構。
    由SEM觀察發現使用異丙醇為溶劑所製備之薄膜其表面型貌為奈米結晶構造,而使用甲醇為溶劑所製備之薄膜則為奈米網狀結構。經XRD分析兩種晶體結構皆屬於六方晶系之HCP結構,前者呈現(002)之優選方向,後者則為多晶方向成長。氣體感測結果發現以異丙醇為溶劑之薄膜對NO2有較佳的選擇性,在工作溫度200℃偵測10 ppm及50 ppm NO2測得靈敏度為2.96及7.47;固定NO2之濃度為50 ppm,分別於100℃、150℃、200℃、250℃進行量測,在200℃測得最佳之靈敏度為7.47,為感測器之最佳工作溫度;固定工作溫度,對不同濃度之NO2進行感測,顯示感測器具有良好的線性特性。最後在相同工作溫度與NO2氣氛濃度中比較兩種微結構之感測性質,發現奈米網狀結構之感測靈敏度大於奈米結晶構造,在100 ppm NO2中測得最佳之靈敏度為31.6。

    目錄 摘要 I 英文摘要 II 目錄 III 圖目錄 VI 表目錄 VIII 第一章 序論 1 1-1 前言 1 1-2 氣體感測器 1 1-3 研究動機與目的 4 第二章 基本理論與文獻回顧 7 2-1 感測材料 7 2-1-1 氧化鋅(ZnO) 7 2-1-2 氧化鋅於氣體感測器之相關研究 9 2-2 溶膠凝膠法(SOL-GEL METHOD) 11 2-2-1 溶膠凝膠法之製備原理 12 2-3 金屬氧化物半導體(MOS)之感測原理 16 第三章 實驗方法與步驟 20 3-1 實驗藥品 20 3-2 實驗流程 20 3-2-1 前驅鍍液配製 20 3-2-2 基材清潔 21 3-2-3 旋轉塗佈法覆膜 21 3-2-4 退火熱處理 25 3-3 性質分析 25 3-3-1 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 25 3-3-2 X光繞射分析儀(X-ray Diffraction, XRD) 25 3-3-3 氣體感測分析(Gas sensing test) 27 第四章 結果與討論 30 4-1 以醋酸鋅-異丙醇-乙醇胺製備之氧化鋅薄膜 30 4-1-1 以SEM觀察薄膜表面型貌 30 4-1-2 以XRD觀察薄膜晶體結構 33 4-1-3 薄膜氣體感測 34 4-1-3-1 選擇性(Selectivity)測試 34 4-1-3-2 最佳工作溫度(Working temperature)測試 39 4-1-3-3 線性(Linear)測試 42 4-2 以醋酸鋅-甲醇-乙醇胺製備之氧化鋅薄膜 43 4-2-1 以SEM觀察薄膜表面型貌 43 4-2-2 以XRD觀察薄膜晶體結構 45 4-2-3 奈米網狀結構氣體感測 46 第五章 結論與展望 50 5-1 結論 50 5-2 未來展望 51 參考文獻 52

    1. 蔡嬪嬪、曾明漢 “氣體感測器之簡介、應用及市場” 材料與社會,第68期(1992)50–56.
    2. T-J Hsueh, Y-W Chen, S-J Chang, S-F Wang, C-L Hsu, Y-R Lin, T-S Lin, I-C Chen, “ZnO nanowire-based CO sensors prepared on patterned ZnO:Ga/SiO2/Si templates”, Sensors and Actuators B 125 (2007) 498-503.
    3. K-W Kim, P-S Cho, S-J Kim, J-H Lee, C-Y Kang, J-S Kim, S-J Yoon, “The selective detection of C2H5OH using SnO2-ZnO thin film gas sensors prepared by combinatorial solution deposition”, Sensors and Actuators B 123 (2007) 318-324.
    4. S-M Chou, L-G Teoh, W-H Lai, Y-H Su, M-H Hon, “ZnO:Al Thin Film Gas Sensor for Detection of Ethanol Vapor”, Sensors 6 (2006) 1420-1427.
    5. P. Bhattacharyya, P.K. Basu, H. Saha, S. Basu, “Fast response methane sensor using nanocrystalline zinc oxide thin films derived by sol-gel method”, Sensors and Actuators B 124 (2007) 62-67.
    6. T. Tsuchiya, “Preparation and properties of transparent conductive thin films by the sol–gel process”, J. Noncrystal. Solids 178 (1994) 327–332.
    7. J. I. Pankove, “Optical Progress in Semiconductors”, Dover, New York, 1975.
    8. D. Bao, H. Gu, A. Kuang, “Sol-gel-derived c-axis oriented ZnO thin films”, Thin solid films 312 (1998) 37-39.
    9. D. G. Baik, S. M. Cho, “Application of sol-gel derived films for ZnO/n-Si junction solar cells”, Thin Solid Films 354 (1999) 227-231.
    10. H-W Ryua, B-S Park, “ZnO sol–gel derived porous film for CO gas sensing”, Sensors and Actuators B 96 (2003) 717-722.
    11. F. D. Paraguay, J. Morales, W. L. Estrada, E. Andrade, M. M. Yoshida, “Influence of Al, In, Cu, Fe and Sn dopants in the microstructure of zinc oxide thin films obtained by spray pyrolysis”, Thin solid Films 366 (2000) 16-27.
    12. R. Wang, L. H. King, A. W. , “Highly conducting transparent thin films based on zinc oxide”, Sleight, J. Mater. Res. 11 (1996) 1659-1664.
    13. B. Bott, T.A. Jones, B. Mann, “The detection and measurement of CO using ZnO single crystals”, Sensors and Actuators 5 (1984) 65–73.
    14. H. Nanto, T. Minami, S. Takata, “Zinc-oxide thin-film ammonia gas sensors with high-sensitivity and excellent selectivity”, J. Appl. Phys. 60 (2) (1986) 482–484.
    15. M. Egashira, N. Kanehara, Y. Shimizu, H. Iwanaga, “Gas-sensing characteristics of Li+-doped and undoped ZnO whiskers”, Sensors and Actuators 18 (1989) 349–360.
    16. G. Sberveglieri, P. Nelli, S. Groppelli, “Oxygen gas sensing characteristics at ambient pressure of undoped and lithium-doped ZnO-sputtered thin films”, Mater. Sci. Eng. B 7 (1990) 63–68.
    17. D.F. Paraguay, M. Miki-Yoshida, J. Morales, J. Solis, L.W. Estrada, “Influence of Al, In, Cu, Fe and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapour”, Thin Solid Films 373 (2000) 137–140.
    18. J.D. Choi, G.M. Choi, “Electrical and CO gas sensing properties of layered ZnO-CuO sensor”, Sensors and Actuators B 69 (2000) 120–126.
    19. Sergiu T. Shishiyanu, Teodor S. Shishiyanu, Oleg I. Lupan, “Sensing characteristics of tin-doped ZnO thin films as NO2 gas sensor”, Sensors and Actuators B 107 (2005) 379–386.
    20. K. Arshak, I. Gaidan, “Development of a novel gas sensor based on oxide thick films”, Materials Science and Engineering B 118 (2005) 44-49.
    21. H.Y. Bae, G.M. Choi, “Electrical and reducing gas sensing properties of ZnO and ZnO–CuO thin films fabricated by spin coating method”, Sensors and Actuators B 55 (1999) 47-54.
    22. H. Gong, J.Q. Hu, J.H. Wang, C.H. Ong, F.R. Zhu, “Nano-crystalline Cu- doped ZnO thin film gas sensor for CO”, Sensors and Actuators B 115 (2006) 247-251
    23. 董建岳 “奈米孔洞無機材料之製備” 化工科技與商情42 期,民92年3 月,pp. 33-36.
    24. C. J. Brinker and G. Scherer, “The Physics and Chemistry of Sol-Gel Processing”, Sol-Gel Science, Academic Press, New York, 1990.
    25. 蔣孝撤 “溶凝膠製作與應用專輯” 化工,第46 卷第5 期,民88 年,pp. 12-15.
    26. 陳慧英、黃定加、朱秦億 “溶膠凝膠法在製備膜薄上之應用” 化工技術第七卷第十一期,1999年11月,pp. 152-166.
    27. 郭旭祥 ”ZnO:Al薄膜氣體感測器之研究” 國立成功大學材料科學及工程學系,碩士論文,民國八十八年
    28. M. Takata, D. Tsubone, H. Yanagida, “Dependence of electrical conductivity of ZnO on degree of sensing”, J. Am. Ceram. Soc. 59 (1976) 4–8.
    29. J.F. McAleer, P.T. Mosely, J.O. Norris and D.E. Williams, “Tin dioxide gas sensors”, J.Chem.Soc. Faraday Trans. 83 (1987) 1323.
    30. 陳一誠、劉旭禎“一氧化碳氣體感測技術”工業材料雜誌 227期,94年11月,pp. 68-80.
    31. Y.S. Kim, W.P. Tai, S.J. Shu, “Effect of preheating temperature on structural and optical properties of ZnO thin films by sol-gel process”, Thin Solid Films 491 (2005) 153-160.
    32. M. J. Madou, S. R. Mirrion, “Solid-state background, in :Chemical Sensing with Solid State Devices”, Academic Press, Boston (1989) 67-104.

    下載圖示
    QR CODE