簡易檢索 / 詳目顯示

研究生: 陳宇軒
Chen, Yu-Hsuan
論文名稱: 臺灣雲林地層下陷災害空間分析
A Spatial Analysis of Land Subsidence Hazard in Yunlin, Taiwan
指導教授: 吳秉昇
Wu, Bing-Sheng
王冠棋
Wang, Kuan-Chi
口試委員: 陳致元
Chen, Chih-Yuan
洪立三
Hung, Li-San
王冠棋
Wang, Kuan-Chi
吳秉昇
Wu, Bing-Sheng
口試日期: 2020/12/04
學位類別: 碩士
Master
系所名稱: 地理學系
Department of Geography
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 84
中文關鍵詞: Boruta地層下陷風險空間模型脆弱度
英文關鍵詞: Boruta, land subsidence, loss, risk, spatial modeling, vulnerability, Yunlin
研究方法: 空間分析
DOI URL: http://doi.org/10.6345/NTNU202100928
論文種類: 學術論文
相關次數: 點閱:189下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一章 緒論 1 第一節 研究動機 1 第二節 研究目的 5 第三節 研究範圍 5 第二章 文獻回顧 6 第一節 氣候變遷事件、調適、脆弱度與風險 6 第二節 脆弱度指標 19 第三節 脆弱度方法評估 27 第三章 研究方法 28 第一節 研究假設設計 28 第二節 研究限制 28 第三節 損失計算、脆弱度因子選擇與預處理 29 第四節 脆弱度因子篩選 34 第五節 脆弱度因子權重與脆弱度計算 38 第六節 脆弱度因子與風險因子相關性檢驗 40 第七節 風險計算 41 第八節 風險指標空間性 42 第四章 研究成果 48 第一節 脆弱度指標分析 48 第二節 危害度指數分析 54 第三節 人口統計分析 56 第四節 風險指數分析 58 第五節 風險指標的空間關聯性 60 第五章 結論與建議 67 第一節 研究結論 67 第二節 未來研究建議 69 參考文獻 70

    Abri, F., Gutierrez, L. F., Namin, A. S., Jones, K. S., & Sears, D. R. W. (2020). Fake Reviews Detection through Analysis of Linguistic Features. ArXiv:2010.04260 [Cs]. http://arxiv.org/abs/2010.04260
    Adger, N., Aggarwal, P., Agrawala, S., Alcamo, J., Allali, A., Arnell, N., Boko, M., Canziani, O., Carter, T., Casassa, G., Cruz, R. V., Alcaraz, E. de A., Easterling, W., Field, C., Fischlin, A., Fitzharris, B. B., García, C. G., Hanson, C., Harasawa, H., ... Yohe, G. (2007). Climate Change 2007: Impacts, Adaptation and Vulnerability Working Group II Contribution to the Intergovernmental Panel on Climate Change Fourth Assessment Report. 23.
    Adger, W. N. (2006). Vulnerability. Global Environmental Change, 16(3), 268–281. https://doi.org/10.1016/j.gloenvcha.2006.02.006
    Adger, W. N., Brooks, N., Bentham, G., Agnew, M., & Eriksen, S. (2004). New indicators of vulnerability and adaptive capacity. 129.
    Anselin, L. (1996). Interactive Techniques and Exploratory Spatial Data Analysis. Regional Research Institute Working Papers. https://researchrepository.wvu.edu/rri_pubs/200
    Anselin, L. (1999). The Future of Spatial Analysis in the Social Sciences. Geographic Information Sciences, 5(2), 67–76. https://doi.org/10.1080/10824009909480516
    bbc.com. (2020, June 22). Arctic Circle sees “highest-ever” temperatures. BBC News. https://www.bbc.com/news/science-environment-53140069
    Blachowski, J. (2016). Application of GIS spatial regression methods in assessment of land subsidence in complicated mining conditions: Case study of the Walbrzych coal mine (SW Poland). Natural Hazards, 84(2), 997–1014. https://doi.org/10.1007/s11069-016-2470-2
    Bogard, W. C. (1988). Bringing Social Theory to Hazards Research: Conditions and Consequences of the Mitigation of Environmental Hazards. Sociological Perspectives, 31(2), 147–168. JSTOR. https://doi.org/10.2307/1389080
    Bohle, H. G., Downing, T. E., & Watts, M. J. (1994). Climate change and social vulnerability. Global Environmental Change, 4(1), 37–48. https://doi.org/10.1016/0959-3780(94)90020-5
    Burton, I. (1994). Deconstructing adaptation... And reconstructing. Delta, 5(1), 14–15. Busby, E. J. W., & Hazen, J. M. (2011). Mapping and Modeling Climate Security Vulnerability: Workshop Report. 34.
    Cao, J., Ma, F., Guo, J., Lu, R., & Liu, G. (2019). Assessment of mining-related seabed subsidence using GIS spatial regression methods: A case study of the Sanshandao gold mine (Laizhou, Shandong Province, China). Environmental Earth Sciences, 78(1), 26. https://doi.org/10.1007/s12665-018-8022-1
    Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical Engineering, 40(1), 16–28. https://doi.org/10.1016/j.compeleceng.2013.11.024
    Chang, C.-C., & Wang, T.-N. (2006). GPS Monitoring Ground Subsidence Associated with Seasonal Underground Water Level Decline: Case Analysis for a Section of Taiwan High Speed Rail. 66(1), 10.
    Chien, L.-K., Wu, J.-P., & Tseng, W.-C. (2019). The Study of Risk Assessment of Soil Liquefaction on Land Development and Utilization by GIS in Taiwan. In J. Rocha & P. Abrantes (Eds.), Geographic Information Systems and Science. IntechOpen. https://doi.org/10.5772/intechopen.82417
    Clayton, S., Devine-Wright, P., Stern, P. C., Whitmarsh, L., Carrico, A., Steg, L., Swim, J., & Bonnes, M. (2015). Psychological research and global climate change. Nature Climate Change, 5(7), 640–646. https://doi.org/10.1038/nclimate2622
    Coumou, D., & Rahmstorf, S. (2012). A decade of weather extremes. Nature Climate Change, 2(7), 491–496. https://doi.org/10.1038/nclimate1452
    Cox, LA. (2008). What’s Wrong with Risk Matrices? Risk Analysis, 28(2), 497–512. https://doi.org/10.1111/j.1539-6924.2008.01030.x
    Cuevas, S. C. (2011). Climate change, vulnerability, and risk linkages. International Journal of Climate Change Strategies and Management, 3(1), 29–60. https://doi.org/10.1108/17568691111107934
    Cutter, S. L. (1996). Vulnerability to environmental hazards. Progress in Human Geography, 20(4), 529–539. https://doi.org/10.1177/030913259602000407
    Cutter, S. L., Boruff, B. J., & Shirley, W. L. (2003). Social Vulnerability to Environmental Hazards*. Social Science Quarterly, 84(2), 242–261. https://doi.org/10.1111/1540-6237.8402002
    Cutter, S. L., & Emrich, C. (2005). Are natural hazards and disaster losses in the U.S. increasing? Eos, Transactions American Geophysical Union, 86(41), 381–389. https://doi.org/10.1029/2005EO410001
    Cutter, S. L., & Finch, C. (2008). Temporal and spatial changes in social vulnerability to natural hazards. Proceedings of the National Academy of Sciences, 105(7), 2301–2306. https://doi.org/10.1073/pnas.0710375105
    Cutter, S. L., Mitchell, J. T., & Scott, M. S. (2000). Revealing the Vulnerability of People and Places: A Case Study of Georgetown County, South Carolina. Annals of the Association of American Geographers, 90(4), 713–737. https://doi.org/10.1111/0004-5608.00219
    Dall’Osso, F., Gonella, M., Gabbianelli, G., Withycombe, G., & Dominey-Howes, D. (2009). A revised (PTVA) model for assessing the vulnerability of buildings to tsunami damage. Natural Hazards and Earth System Science, 9(5), 1557–1565. https://doi.org/10.5194/nhess-9-1557-2009
    Dao, H., & Peduzzi, P. (2003). Global Risk And Vulnerability Index Trends per Year (GRAVITY) Phase IV: Annex to WVR and Multi Risk Integration.
    Das, S., Ghosh, A., Hazra, S., Ghosh, T., Safra de Campos, R., & Samanta, S. (2020). Linking IPCC AR4 & AR5 frameworks for assessing vulnerability and risk to climate change in the Indian Bengal Delta. Progress in Disaster Science, 7, 100110. https://doi.org/10.1016/j.pdisas.2020.100110
    Dietterich, T. G. (1997). Machine-Learning Research. AI magazine, 18, 97-136.
    Dow, K. (1992). Exploring differences in our common future(s): The meaning of vulnerability to global environmental change. Geoforum, 23(3), 417–436. https: //doi.org/10.1016/0016-7185(92)90052-6
    Eakin, H., & Luers, A. L. (2006). Assessing the Vulnerability of Social-Environmental Systems. Annual Review of Environment and Resources, 31(1), 365–394. https://doi.org/10.1146/annurev.energy.30.050504.144352
    Esteban, M., Jamero, Ma. L., Nurse, L., Yamamoto, L., Takagi, H., Thao, N. D., Mikami, T., Kench, P., Onuki, M., Nellas, A., Crichton, R., Valenzuela, V. P., Chadwick, C., Avelino, J. E., Tan, N., & Shibayama, T. (2019). Adaptation to sea level rise on low coral islands: Lessons from recent events. Ocean & Coastal Management, 168, 35–40. https://doi.org/10.1016/j.ocecoaman.2018.10.031
    Fellmann, T. (2012). The assessment of climate change-related vulnerability in the agricultural sector: Reviewing conceptual frameworks. 26.
    Ferber, R. (1956). Are Correlations any Guide to Predictive Value? Journal of the Royal Statistical Society. Series C (Applied Statistics), 5(2), 113–121. https://doi.org/10.2307/2985494
    Fotheringham, A., Charlton, M., & Brunsdon, C. (1996). The Geography of Parameter Space: An Investigation of Spatial Non-Stationarity. International Journal of Geographical Information Science, 10, 605–627. https://doi.org/10.1080/026937996137909
    Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002). Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. https://doi.org/null
    Füssel, H.-M. (2007). Vulnerability: A generally applicable conceptual framework for climate change research. Global Environmental Change, 17(2), 155–167. https://doi.org/10.1016/j.gloenvcha.2006.05.002
    Füssel, H.-M., & Klein, R. J. T. (2006). Climate Change Vulnerability Assessments: An Evolution of Conceptual Thinking. Climatic Change, 75(3), 301–329. https://doi.org/10.1007/s10584-006-0329-3
    Getis, A., & Ord, J. K. (1992). The Analysis of Spatial Association by Use of Distance Statistics. Geographical Analysis, 24(3), 189–206. https://doi.org/10.1111/j.1538-4632.1992.tb00261.x
    Hahn, M. B., Riederer, A. M., & Foster, S. O. (2009). The Livelihood Vulnerability Index: A pragmatic approach to assessing risks from climate variability and change—A case study in Mozambique. Global Environmental Change, 19(1), 74–88. https://doi.org/10.1016/j.gloenvcha.2008.11.002
    Hwang, C., Hung, W.-C., & Liu, C.-H. (2008). Results of geodetic and geotechnical monitoring of subsidence for Taiwan High Speed Rail operation. Natural Hazards, 47(1), 1–16. https://doi.org/10.1007/s11069-007-9211-5
    IPCC. (2001). Overview of Impacts, Adaptation, and Vulnerability to Climate Change—IPCC. https://www.ipcc.ch/report/ar3/wg2/chapter-1-overview-of-impacts-adaptation-and- vulnerability-to-climate-change/
    Karaye, I. M., & Horney, J. A. (2020). The Impact of Social Vulnerability on COVID-19 in the U.S.: An Analysis of Spatially Varying Relationships. American Journal of Preventive Medicine, 59(3), 317–325. https://doi.org/10.1016/j.amepre.2020.06.006
    Kelly, P. M., & Adger, W. N. (2000). Theory and Practice in Assessing Vulnerability to Climate Change andFacilitating Adaptation. Climatic Change, 47(4), 325–352. https://doi.org/10.1023/A:1005627828199
    Kursa, M. B., Jankowski, A., & Rudnicki, W. R. (2010). Boruta – A System for Feature Selection. Fundamenta Informaticae, 101(4), 271–285. https://doi.org/10.3233/FI-2010-288
    Kursa, M. B., & Rudnicki, W. R. (2010). Feature Selection with the Boruta Package. Journal of Statistical Software, 36(11). https://doi.org/10.18637/jss.v036.i11
    Laken, P. van der. (2021, January 12). ppsr: An R implementation of the Predictive Power Score | R-bloggers. https://www.r-bloggers.com/2021/01/ppsr-an-r-implementation-of-the-predictive-power-score/
    Liaw, A., & Wiener, M. (2002). Classification and Regression by randomForest. 2, 5.
    Lin, W.-Y., & Hung, C.-T. (2016). Applying spatial clustering analysis to a township-level social vulnerability assessment in Taiwan. Geomatics, Natural Hazards and Risk, 7(5), 1659– 1676. https://doi.org/10.1080/19475705.2015.1084542
    Liverman, D. (1990). Vulnerability to Global Change. Clark University, Earth Transformed Program: Worcester MA. https://dianaliverman.files.wordpress.com/2014/12/liverman-1990-vulnerability-to-gec- in-kasperson-et-al.pdf
    Lopez-Carr, D., Pricope, N. G., Aukema, J. E., Jankowska, M. M., Funk, C., Husak, G., & Michaelsen, J. (2014). A spatial analysis of population dynamics and climate change in Africa: Potential vulnerability hot spots emerge where precipitation declines and demographic pressures coincide. Popul Environ, 17.
    Ludena, C. E., & Yoon, S. W. (2015). Local Vulnerability Indicators and Adaptation to Climate Change. 51.
    Macdonald, N., Chester, D., Sangster, H., Todd, B., & Hooke, J. (2012). The significance of Gilbert F. White’s 1945 paper ‘Human adjustment to floods’ in the development of risk and hazard management. Progress in Physical Geography: Earth and Environment, 36(1), 125–133. https://doi.org/10.1177/0309133311414607
    Miller, H. J. (2004). Tobler’s First Law and Spatial Analysis. Annals of the Association of American Geographers, 94(2), 284–289. JSTOR.
    Moran, P. a. P. (1950). NOTES ON CONTINUOUS STOCHASTIC PHENOMENA. Biometrika, 37(1–2), 17–23. https://doi.org/10.1093/biomet/37.1-2.17
    Mukherji, A. (2006). Political ecology of groundwater: The contrasting case of water-abundant West Bengal and water-scarce Gujarat, India. Hydrogeology Journal, 14(3), 392–406. https://doi.org/10.1007/s10040-005-0007-y
    Naik, N., & Mohan, B. R. (2019). Stock Price Movements Classification Using Machine and Deep Learning Techniques-The Case Study of Indian Stock Market. In J. Macintyre, L. Iliadis, I. Maglogiannis, & C. Jayne (Eds.), Engineering Applications of Neural Networks (pp. 445–452). Springer International Publishing. https://doi.org/10.1007/978-3-030- 20257-6_38
    O’Brien, K., Eriksen, S., Nygaard, L. P., & Schjolden, A. (2007). Why different interpretations of vulnerability matter in climate change discourses. Climate Policy, 7(1), 73–88. https://doi.org/10.1080/14693062.2007.9685639
    O’Brien, K. L., & Leichenko, R. M. (2000). Double exposure: Assessing the impacts of climate change within the context of economic globalization. Global Environmental Change, 10(3), 221–232. https://doi.org/10.1016/S0959-3780(00)00021-2
    O’Brien, K., Leichenko, R., Kelkar, U., Venema, H., Aandahl, G., Tompkins, H., Javed, A., Bhadwal, S., Barg, S., Nygaard, L., & West, J. (2004). Mapping vulnerability to multiple stressors: Climate change and globalization in India. Global Environmental Change, 14(4), 303–313. https://doi.org/10.1016/j.gloenvcha.2004.01.001
    Pancerz, K., Paja, W., & Gomuła, J. (2016). Random forest feature selection for data coming from evaluation sheets of subjects with ASDs. 2016 Federated Conference on Computer Science and Information Systems (FedCSIS), 299–302.
    Papathoma-Köhle, M., Schlögl, M., & Fuchs, S. (2019). Vulnerability indicators for natural hazards: An innovative selection and weighting approach. Scientific Reports, 9(1), 15026. https://doi.org/10.1038/s41598-019-50257-2
    Paul, S. K. (2013). Vulnerability Concepts and its Application in Various Fields: A Review on Geographical Perspective. https://doi.org/10.3329/jles.v8i0.20150
    Prasannakumar, V., Vijith, H., Charutha, R., & Geetha, N. (2011). Spatio-Temporal Clustering of Road Accidents: GIS Based Analysis and Assessment. Procedia - Social and Behavioral Sciences, 21, 317–325. https://doi.org/10.1016/j.sbspro.2011.07.020
    Preston, B. L., & Stafford-Smith, M. (2009). Framing vulnerability and adaptive capacity assessment: Discussion paper. CSIRO Climate Adaptation Flagship Working Paper, No.1, CSIRO,Australia. https://publications.csiro.au/rpr/download?pid=procite: adb84f2f-6855-4daa-95de-8b7d1d7603b3&dsid=DS1
    Ram, S., & Liu, J. (2009, January 1). A New Perspective on Semantics of Data Provenance.
    RAMLI, M. W. A., Alias, N. E. B., & Yusop, Z. (2019). A Review on Disaster Risk Index of Various Countries. 4th Global Summit of Research Institutes for Disaster Risk Reduction. http://gadri.net/4gsridrr/4thGlobalSummit_presentations/19gadri4022.pdf
    Renard, F. (2017). Flood risk management centred on clusters of territorial vulnerability. Geomatics, Natural Hazards and Risk, 8(2), 525–543. https://doi.org/10.1080/19475705.2016.1250111
    Roy, J., Tschakert, P., Waisman, H., Halim, S., Antwi-Agyei, P., Dasgupta, P., Hayward, B., Kanninen, M., Liverman, D., Okereke, C., Pinho, P., Riahi, K., Rodriguez, A., Aragón- Durand, F., Babiker, M., Bangalore, M., Bertoldi, P., Byers, E., Choudhary, B., & Wewerinke-Singh, M. (2018). Sustainable development, poverty eradication and reducing inequalities. In: Global warming of 1.5°C. An IPCC Special Report.
    Schipper, L., & Burton, I. (2009). Understanding adaptation: Origins, concepts, practice and policy. 1–8.
    Schneiderbauer, S., & Ehrlich, D. (2004.). Risk, hazard and people’s vulnerability to natural hazards. 43.
    Shah, T., Giordano, M., & Wang, J. (2004). Irrigation Institutions in a Dynamic Economy: What Is China Doing Differently from India? Economic and Political Weekly, 39, 3452– 3461. https://doi.org/10.2307/4415340
    Sharma, J., & Ravindranath, N. H. (2019). Applying IPCC 2014 framework for hazard-specific vulnerability assessment under climate change. Environmental Research Communications, 1(5), 051004. https://doi.org/10.1088/2515-7620/ab24ed
    Shi, Y., Shi, D., & Cao, X. (2018). Impacting Factors and Temporal and Spatial Differentiation of Land Subsidence in Shanghai. Sustainability, 10(9), 3146. https://doi.org/10.3390/su10093146
    Shimpo, A., Takemura, K., Wakamatsu, S., Togawa, H., Mochizuki, Y., Takekawa, M., Tanaka, S., Yamashita, K., Maeda, S., Kurora, R., Murai, H., Kitabatake, N., Tsuguti, H., Mukougawa, H., Iwasaki, T., Kawamura, R., Kimoto, M., Takayabu, I., Takayabu, Y. N., ... Nakamura, H. (2019). Primary Factors behind the Heavy Rain Event of July 2018 and the Subsequent Heat Wave in Japan. SOLA, 15A(0), 13–18. https://doi.org/10.2151/sola.15A-003
    Smit, B., & Wandel, J. (2006). Adaptation, adaptive capacity and vulnerability. Global Environmental Change, 16(3), 282–292. https://doi.org/10.1016/j.gloenvcha.2006.03.008
    Smithers, J., & Smit, B. (1997). Human adaptation to climatic variability and change. Global Environmental Change, 7(2), 129–146. https://doi.org/10.1016/S0959-3780(97)00003-4
    Sung, C.-H., & Liaw, S.-C. (2020). A GIS Approach to Analyzing the Spatial Pattern of Baseline Resilience Indicators for Community (BRIC). Water, 12(5), 1401. https://doi.org/10.3390/w12051401
    Timmerman, P. (Peter). (1981). Vulnerability, resilience and the collapse of society: A review of models and possible climatic applications. Toronto : institute for Environmental Studies, University of Toronto. http://archive.org/details/vulnerabilityres00timm
    Tobler, W. (2004). On the First Law of Geography: A Reply. Annals of the Association of American Geographers, 94(2), 304–310. https://doi.org/10.1111/j.1467-8306.2004.09402009.x
    Tobler, W. R. (1970). A Computer Movie Simulating Urban Growth in the Detroit Region. Economic Geography, 46, 234–240. JSTOR. https://doi.org/10.2307/143141
    Vautard, R., van Aalst, M., Boucher, O., Drouin, A., Haustein, K., Kreienkamp, F., van Oldenborgh, G. J., Otto, F. E. L., Ribes, A., Robin, Y., Schneider, M., Soubeyroux, J.-M., Stott, P., Seneviratne, S. I., Vogel, M. M., & Wehner, M. (2020). Human contribution to the record-breaking June and July 2019 heat waves in Western Europe. Environmental Research Letters. https://doi.org/10.1088/1748-9326/aba3d4
    Wang, J., Huang, J., Huang, Q., & Rozelle, S. (2006). Privatization of tubewells in North China: Determinants and impacts on irrigated area, productivity and the water table. Hydrogeology Journal, 14(3), 275–285. https://doi.org/10.1007/s10040-005-0482-1
    Wang, J., Huang, J., Rozelle, S., Huang, Q., & Zhang, L. (2009). Understanding the Water Crisis in Northern China: What the Government and Farmers are Doing. International Journal of Water Resources Development, 25(1), 141–158. https://doi.org/10.1080/07900620802517566
    White, G. F. (1945). Human Adjustment to Floods: A Geographical Approach to the Flood Problem in the United States. University of Chicago.
    Wisner, B. (2016). Vulnerability as Concept, Model, Metric, and Tool. In B. Wisner, Oxford Research Encyclopedia of Natural Hazard Science. Oxford University Press. https://doi.org/10.1093/acrefore/9780199389407.013.25
    Xiong, W., Lin, E., Ju, H., & Xu, Y. (2007). Climate change and critical thresholds in China’s food security. Climatic Change, 81(2), 205–221. https://doi.org/10.1007/s10584-006-9123-5
    王俊明、李心平、李鎮鍵、臧運忠、謝正倫 (2010)。莫拉克颱風災害綜覽。中華防災學 刊,2(1),27-34。 https://doi.org/10.30052/JTDPS.201002.0004
    台灣大學 (2013)。台灣脆弱度及風險地圖製作與整合應用(2/2)。經濟部水利署。 https://lib.wra.gov.tw/opac/mdl_bibliography/book_detail.aspx
    交通部鐵道局 (2020 年 4 月 13 日)。計畫介紹- 高鐵建設- 台灣高鐵。 https://www.rb.gov.tw/showpage.php?lmenuid=3&smenuid=68&tmenuid=93
    行政法人國家災害防救科技中心 (2020)。臺灣歷史極端氣候災害事件。氣候變遷災害風險 調適平台。https://dra.ncdr.nat.gov.tw/Frontend/Disaster/ClimateDetail/BAL0000004
    李欣輯、徐永衡、黃暄穎、陳永明、張駿暉、林李耀 (2016) 。黃金廊道灌區之農作淹水 災害潛勢評估。農業工程學報,62(3),51-62。 https://doi.org/10.29974/JTAE.201609_62(3).0005
    林冠慧、孫志鴻 (2004)。全球變遷人文面向研究的新發展—IHDP 2003 open meeting 的回 顧。全球變遷通訊雜誌, 41, 40-43。 https://doi.org/10.6539/GCC.200403_(41).0006
    林冠慧、張長義 (2015)。脆弱性研究的演變與當前發展。地理學報,77,49-82。 https://doi.org/10.6161/jgs.2015.77.03
    國家災害防救科技中心、中央研究院環境變遷研究中心、科技部「臺灣氣候變遷推估資 訊與調適知識平台計畫」(2017)。臺灣氣候的過去與未來。國家災害防救科技中 心。https://tccip.ncdr.nat.gov.tw/publish_01_one.aspx?bid=20181112092940
    張學聖、劉佩佳 (2015)。考量空間關聯之地區洪災脆弱性研究以雲林縣易淹水地區為例。 地理學報,79,1-29。 https://doi.org/10.6161/jgs.2015.79.01
    溫在弘、劉擇昌、林民浩 (2010)。犯罪地圖繪製與熱區分析方法及其應用,地理研究, 52,43-63。 http://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/23907
    經濟部 (2014)。地下水補注地質敏感區劃定計畫書 G0001 濁水溪沖積扇。
    經濟部水利署 (2018)。107 年度彰化及雲林地區地層下陷監測及分析。 https://lib.wra.gov.tw/libebookFlip/2018/1010702600b/mobile/index.html#p=122
    經濟部水利署 (2011)。違規水井處置作業規劃與量水設備設置推動計畫。
    經濟部水利署水文技術組 (2019)。雲林地區地下水抽取對分層地下水位影響機制之探討。 http://epaper.wra.gov.tw/Article_Detail.aspx?s=AC1BC98086AD044F
    經濟部水利署水文組 (2016)。整合全臺 GPS 固定站資料應用於地層下陷之分析。 http://epaper.wra.gov.tw/Article_Detail.aspx?s=294906FE12CAC35C
    萬勝徨 (2010)。雲林地區之極端降雨對地層下陷影響之研究。國立中興大學土木工程學系 碩士學位論文。
    萬絢、張士勳、黃進源、王依蘋 (2017) 。綠環境模型系列研究:以倒傳遞和亂度基礎分 類法在嘉義黃金廊道之水稻田對影像判釋之研究為例。 水保技術,11(1),1-6。
    葉昕祐、韋煙灶 (2008) 。雲林縣口湖地區土壤鹽化現象的研究。地理研究,48,1–24。 https://doi.org/10.6234/JGR.2008.48.01
    農委會 (2001) 。農業生產與生態環境。農政與農情,103。 https://www.coa.gov.tw/ws.php?id=3861
    農委會 (2016)。黃金廊道區域內產業結構之現況與願景。農政與農情,289。 https://www.coa.gov.tw/ws.php?id=2505149
    劉紹安 (2018)。雲林縣濱海陸地區地層下陷之風險評估。國立臺灣海洋大學河海工程學系 碩士論文。
    鄭立甫 (2010)。極端降雨型態引致彰化地區地下水位變化與地層下陷之影響。國立中興大 學土木工程學系碩士學位論文。
    賴政佑 (2017)。颱洪災害脆弱度與調適能力之研究-以台中市為例。逢甲大學都市計畫與 空間資訊學系碩士論文。https://doi.org/10.6341/fcu.M0406990

    無法下載圖示 電子全文延後公開
    2026/07/29
    QR CODE