簡易檢索 / 詳目顯示

研究生: 鄒毓旂
論文名稱: L-脯胺酸衍生物之含銅催化劑對2-萘酚及其衍生物的不對稱氧化偶合反應
Asymmetric Oxidative Coupling of 2-Naphthol and its Derivatives by Copper(II) Catalyst of L-Proline Derivatives
指導教授: 李位仁
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 60
中文關鍵詞: L-脯胺酸2-萘酚氧化偶合銅錯合物
英文關鍵詞: L-proline, 2-naphthol, oxidative coupling, copper(II) complex
論文種類: 學術論文
相關次數: 點閱:266下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以L-脯胺酸作為起始物,設計並合成一個具有掌性中心的含氮二牙配位基((S)-2-Diphenylmethyl-1-pyrrolidinyl)methyl pyridine (DPPP),藉由DPPP與Cu(OTf)2 於存有NaOMe 的甲醇溶液下反應,可得到一個二價銅錯合物[Cu2(DPPP)2(OH)2](OTf)2 (1),並利用X-ray 繞射結構解析鑑定錯合物1 的幾何結構,為具有氫氧基架橋之雙核銅中心的分子結構,且每個銅金屬配位一個DPPP 配位基,形成平面四邊形的配位環境,兩個銅離子間的距離為2.937 Å 。以錯合物1 當作催化劑對3-羥基-2-萘甲酯進行氧化偶合反應,僅獲得少量的偶合產物。為了改進銅錯合物的催化能力,於是將DPPP 修飾為一個含氮三牙配位基(S)-N-phenyl-1-(pyridin-2-ylmethyl)pyrrolidine-2-carboxamide (HPPPC),藉由HPPPC 與CuCl2 反應可成功地合成出二價銅錯合物Cu(HPPPC)Cl2 (2)與Cu(PPPC)Cl (3),以X-ray 繞射結構解析兩者的幾何結構,可知錯合物2的配位環境為四方角錐體,而錯合物3 則為平面四邊形。使用PPPC- (10 mol%)與Cu(OTf)2 (10 mol%)當作催化劑,並加入有機鹼(10 mol%),可進行2-萘酚的氧化偶合反應,產率可達81%,相同的催化劑亦可進行3-羥基-2-萘甲酯的氧化偶合反應,若是使用HPPPC 與Cu(OTf)2 當作催化劑並添加有機鹼,卻僅能進行2-萘酚的氧化偶合反應。

    A bidentate chiral ligand, ((S)-2-Diphenylmethyl-1-pyrrolidinyl)methyl pyridine (DPPP) derived from L-proline, was designed and prepared. Reaction of Cu(OTf)2 with DPPP in MeOH in the presence of NaOMe gave a copper(II) complex,
    [Cu2(DPPP)2(OH)2](OTf)2 (1). The molecular structure of complex 1 determined by X-ray crystallography revealed a dinuclear copper core bridged by two hydroxide groups with a distance between the copper centers at 2.937 Å and each copper center coordinated with a DPPP ligand, forming a square planar geometry. Unfortunately, complex 1 can only catalyze the oxidative coupling reaction of methyl 3-hydroxy-2-naphthoate in low yield. In order to enhance the catalytic ability of the copper complexes, DPPP was modified to a tridentate ligand, (S)-N-phenyl-1-(pyridin-2-ylmethyl)pyrrolidine-2-carboxamide (HPPPC). Reaction of
    HPPPC with CuCl2 provided copper(II) complexes, Cu(HPPPC)Cl2 (2) and Cu(PPPC)Cl (3). Complexes 2 and 3 were determined by X-ray crystallography and their geometries were square pyramidal and square planar, respectively. When PPPC-
    (10 mol%) and Cu(OTf)2 (10 mol%) were used as a catalyst in presence of organic base (10 mol%), the oxidative coupling reaction for 2-naphthol was in 81% yield. The same oxidative coupling reaction for methyl 3-hydroxy-2-naphthoate can also be catalyzed by the same catalytic system. However, when HPPPC and Cu(OTf)2 were used as a catalyst in presence of organic base, the oxidative coupling reaction only
    occurred for 2-naphthol.

    中文摘要........................................................................................................................ I 英文摘要....................................................................................................................... II 圖索引.......................................................................................................................... III 表所引........................................................................................................................... V 附錄索引...................................................................................................................... VI 第一章 緒論 ................................................................................................................. 1 第一節 研究動機與目的...................................................................................... 1 第二節 含銅蛋白及酵素之介紹.......................................................................... 2 第三節 酪胺酸酶擬態化合物的文獻探討.......................................................... 7 第四節 萘酚與及其衍生物的氧化偶合反應的文獻探討.................................. 9 第二章 實驗部分 ....................................................................................................... 13 第一節 實驗儀器、藥品及條件........................................................................ 13 第二節 配位基的合成與鑑定............................................................................ 18 第三節 金屬錯合物的合成與鑑定.................................................................... 26 第四節 含氮銅錯合物對萘酚之催化反應........................................................ 29 第三章 結果與討論 ................................................................................................... 33 第一節 配位基的合成探討................................................................................ 33 第二節 錯合物的結果與討論............................................................................ 34 第三節 錯合物的電子順磁共振光譜................................................................ 40 第四節 含氮銅催化劑對萘酚及其衍生物之催化反應與探討........................ 42 第四章 結論與展望 ................................................................................................... 57 參考文獻...................................................................................................................... 59 附錄

    1. (a) Rubino, J. T.; Franz, K. J. J. Inorg. Biochem. 2012, 107, 129–143.
    2. (a) Lippard, S. J. Acc. Chem. Res. 1982, 15, 318–326. (b) Wilkinson, D.;
    Akumanyi, N.; Hurtado-Guerrero, R.; Dawkes, H.; Knowles, P.F.; Phillips,
    S.E.V.; McPherson M.J. Protein Engineering, Design & Selection 2004, 17,
    144-148.
    3. (a) Reedijk, J. Chem. Soc. Rev. 2001, 30, 376–385.
    4. (a) Sander, O.; Näther, C.; Tuczek, F. Z. Anorg. Allg. Chem. 2009, 635,
    1123−1133.
    5. (a) Mirica, L. M.; Ottenwaelder, T.; Stack, T. D. P. Chem. Rev. 2004, 104,
    1013–1045.
    6. (a) Karlin, K. D. J. Am. Chem. Soc. 2010, 132, 12927−12940. (b) Amzel, L. M.
    Science 1997, 278, 1300−1305.
    7. Yoshizawa, K. Inorg. Chem. 2006, 45, 3034−3041.
    8. (a) Lucas, H. R.; Karlin, K. D. Met. Ions Life Sci. 2009, 6, 295–361. (b) Solomon,
    E. I.; Sundaram, U. M.; Machonkin, T. E. Chem. Rev. 1996, 96, 2563–2606.
    9. (a) Solomon, E. I.; Stack, T. P. D. Science 2005, 308, 1890–1892. (b) Itoh, S. and
    Fukuzumi, S. Acc. Chem. Res. 2007, 40, 592–600.
    10. (a) Brunel, J. M. Chem. Rev. 2007, 107, PR1–PR45. (b) Luo, Z.; Liu, Q.; Gong,
    L.; Cui, X.; Mi, A.; Jiang, Y. Chem. Commun. 2002, 914–915. (c) Egami, H.;
    Katsuki T. J. Am. Chem. Soc. 2009, 131, 6082–6083. (d) Li, X.; Yang, J.;
    Kozlowski, M. C. Org. Lett. 2001, 3, 1137–1140.
    11. (a) Bailey, D. J.; O'Hagan, D.; Tavasli, M. Tetrahedron Asymmetry 1997, 8,
    149–153. (b) 陳許志勇,國立台灣師範大學化學研究所碩士論文,2011。
    58
    12. 楊詠剴,國立台灣師範大學化學研究所碩士論文,2010。
    13. (a) Gryko, D.; Lipin´ski, R. Eur. J. Org. Chem. 2006, 3864–3876. (b) 朱允立,
    國立台灣師範大學化學研究所碩士論文,2011。
    14. Lee, D.; Long, S. A.; Murray, J. H.; Adams, J. L.; Nuttall, M. E.; Nadeau, D. P.;
    Kikly, K.; Winkler, J. D.; Sung, C.; Ryan, M. D.; Levy, M. A.; Keller, P. M.;
    DeWolf, W. E. J. Med. Chem. 2001, 44, 2015–2026.
    15. Yang, L.; Powell, D.; Houser, R. Dalton Trans. 2007, 955–964.
    16. Addison, A. W.; Rao, T. N.; Reedijk, J.; Rijn J. van; Verschoor, G. C. J. Chem.
    Soc. Dalton Trans. 1984, 1349–1356.
    17. 王維鈴,國立台灣師範大學化學研究所碩士論文,2011。

    下載圖示
    QR CODE