簡易檢索 / 詳目顯示

研究生: 王哲宏
Wang, Jhe-Hong
論文名稱: 採用隱含狄利克雷分佈分析使用者評論:以Steam網站為例
Application of Latent Dirichlet Allocation on Analyzing User Reviews: Case Study on Steam Website
指導教授: 施人英
Shih, Jen-Ying
口試委員: 陳文華
Chen, Wun-Hwa
何宗武
Ho, Tsung-Wu
施人英
Shih, Jen-Ying
口試日期: 2022/08/24
學位類別: 碩士
Master
系所名稱: 全球經營與策略研究所
Graduate Institute of Global Business and Strategy
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 33
中文關鍵詞: 使用者評論主題模型隱含狄利克雷分布Steam遊戲平台
英文關鍵詞: User Review, Topic Model, Latent Dirichlet Allocation, Steam
DOI URL: http://doi.org/10.6345/NTNU202300358
論文種類: 學術論文
相關次數: 點閱:122下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去的研究大多著重於檢驗電子遊戲專家評論,僅有少數研究在探索遊戲玩家提供的使用者生成內容(UGC)。使用者生成內容包含玩家感受的豐富資訊,有助於遊戲開發商了解玩家的真實想法。基於使用者生成內容,本研究著重於分析玩過角色扮演遊戲(Role-Playing Game,簡稱RPG)玩家的使用者生成內容,以探索他們的想法和態度。

    本研究提出一個適用於遊戲評論文本主題的分析方法,主要是依據隱含狄利克雷分布(Latent Dirichlet Allocation,簡稱LDA)演算法,它可以將文本集中成一篇,而每篇文本的主題則按照概率分布的形式。從Steam遊戲平台所擷取的玩家評論內容中或許含有關於角色、遊戲畫面、故事等相關的評論主題,這些主題可以視為玩家的特徵,因此本研究運用LDA主題模型,從玩家的遊戲評論內容分析出玩家特徵以及遊戲的關鍵屬性。

    綜合研究結果可以確認,本研究選擇的三款目標遊戲雖都同屬於角色扮演遊戲類型,但遊戲內容及玩法不盡相同(如故事背景、遊戲視角等)。本研究將評論資料基於LDA主題模型分析出大部分玩家著重於對於角色扮演遊戲的規則及目標,但由於三款遊戲還是有不同內容,因此從LDA主題模型分析出也會有相異的主題屬性。

    本研究提供遊戲開發商一個實務方式來有效率確認玩家關注的主題,對於遊戲的後續改善提出建議,以及開發新遊戲提出方向。

    In the past, most of the studies focused on game reviews from experts, with only a few exploring the reviews provided by players. User reviews contain a wealth of information about players' feelings and helps developers understand players’ thoughts. Based on user-generated content, this study focuses on analyzing the user-generated content of role-playing games players to explore their thoughts and attitudes.

    This study proposes an analysis method suitable for game reviews, mainly based on the Latent Dirichlet Allocation(LDA), which can collect all the reviews into one document, and the topic of each is in the form of probability distribution given. The player review contents extracted from Steam website may contain some topics such as characters, graphics, stories, etc. These topics can be considered as the characteristics of the player. Therefore, this study uses the LDA topic model to analyze the player's reviews and analyzes players' characteristics and key attributes of the games.

    Based on the results, it can be confirmed that although the three different games selected are role-playing games, however the game content and gameplay are different (such as story background, game perspective, etc.). This study analyzes the review based on the LDA topic model and finds that most players focus on the rules and objectives of role-playing games, but since these three games still have different contents, the LDA topic model will also have different topic attributes.

    This study provides an empirical method for developers to identify the topics that players focus on and gives suggestions for the following improvement.

    第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 3 1.3 研究架構 3 第二章 文獻探討 5 2.1 使用者生成內容與評論的應用 5 2.2 主題模型與隱含狄利克雷分布 6 2.3 遊戲屬性分類 8 第三章 研究方法 10 3.1 資料蒐集 10 3.2 文字預處理 11 3.3 主題模型應用 13 第四章 研究結果 16 4.1 研究資料 16 4.2 結果評估 16 4.2.1 電馭叛客2077 16 4.2.2 巫師3:狂獵 17 4.2.3 隻狼:暗影雙死 19 4.3 綜合討論 20 第五章 結論與建議 21 5.1 結論 21 5.2 研究限制 21 5.3未來研究方向 22 參考文獻 24 附錄 28

    Bedwell, W., Pavlas, D., Heyne, K., Lazzara, E. H., & Salas, E. (2012). Toward a taxonomy linking game attributes to learning: An empirical study. Simulation & Gaming, 43(6), 729-760.
    Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Learning research, 3, 993-1022.
    Chen, S., & Michael, D. (2005). Proof of learning: Assessment in serious games. Gamasutra. Retrieved April 27, 2021 from https://www.gamedeveloper.com/design/proof-of-learning-assessment-in-serious-games
    Clever, N., Kirchner, A., Schray, D., & Schulte, M. (2009). User-generated content. Informally published manuscript, Institute for Economic Computer Science, Münster, Germany.
    Crawford, C. (1984). The art of computer game design. Berkeley, Calif: Osborne/McGraw-Hill.
    Daugherty, T., Eastin, M. S., & Bright, L. (2008). Exploring consumer motivations for creating user-generated content. Journal of interactive advertising, 8(2), 16-25.
    Facebook Gaming (2021). Gaming marketing insight for 2021. Retrieved May 15, 2021 from https://www.facebook.com/business/news/insights/what-unprecedented-growth-means-for-the-future-of-the-gaming-industry
    Garris, R., Ahlers, R., & Driskell, J. E. (2002). Games, motivation, and learning: A research and practice model. Simulation & Gaming, 33(4), 441-467.
    Gentile, D. A., & Gentile, J. R. (2008). Violent video games as exemplary teachers: A conceptual analysis. Journal of Youth Adolescence, 37(2), 127-141.
    Giachanou, A., & Crestani, F. (2016). Like it or not: A survey of twitter sentiment analysis methods. ACM Computing Surveys (CSUR), 49(2), 28.
    Grimmer, J., & Stewart, B. M. (2013). Text as data: The promise and pitfalls of automatic content analysis methods for political texts. Political analysis, 21(3), 267-297.
    Cover, J. G. (2010). The creation of narrative in tabletop role-playing games. Jefferson, N.C: McFarland & Co.
    Hong, L., & Davison, B. D. (2010). Empirical study of topic modeling in twitter. Proceedings of the first workshop on social media analytics, 80-88.
    Johnson, D., Watling, C. N., Gardner, J., & Nacke, L. E. (2014). The edge of glory: The relationship between metacritic scores and player experience. Proceedings of the first ACM SIGCHI annual symposium on Computer-human interaction in play, 141-150.
    Kim, M., & Kim, D. (2022). A Suggestion on the LDA-Based Topic Modeling Technique Based on ElasticSearch for Indexing Academic Research Results. Applied Sciences. 12, 3118.
    Koehler, M. J., Arnold, B., Greenhalgh, S. P., & Boltz, L. O. (2017). A taxonomy approach to studying how gamers review games. Simulation & Gaming, 48(3), 363-380.
    Krumm, J., Davies, N., & Narayanaswami, C. (2008). User-Generated Content, IEEE Pervasive Computing, 7(4), 10-11.
    Lazer, D., Kennedy, R., King, G., & Vespignani, A. (2014). The parable of Google Flu: traps in big data analysis. Science, 343(6176), 1203-1205.
    Lin, D., Bezemer, C., & Hassan A.E. (2017). Studying the urgent updates of popular
    games on the Steam platform. Empirical Software Engineering, 22(4), 2095-2126.
    Lin, D., Bezemer, C., Zou, Y. & Hassan, A. E. (2019). An Empirical Study of Game Reviews on the Steam Platform. Empirical Software Engineering, 24, 170-207 
    Lin, M., Lucas Jr, H. C., & Shmueli, G. (2013). Too big to fail: Large samples and the p-value problem. Information Systems Research, 24(4), 906-917
    Liu, X., Burns, A. C., & Hou, Y. (2017). An investigation of brand-related user generated content on Twitter. Journal of Advertising, 46(2), 236-247.
    Maier, D., Waldherr, A., Miltner, P., Wiedemann, G., Niekler, A., Keinert, A., Pfetsch, B., Heyer, G., Reber, U., & Häussler, T. (2018). Applying LDA topic modeling in communication research: Toward a valid and reliable methodology. Communication Methods and Measures, 12(2-3), 93-118.
    Owen, M. (2004). An anatomy of games: A discussion paper. Bristol, UK, Future-Lab.
    Papadimitriou, C. H., Prabhakar, R. Tamaki, H., & Vempala, S. (2000). Latent Semantic Indexing: A Probabilistic Analysis, Journal of Computer and System Sciences, 61(2), 217-235,
    Phan, M. H., Keebler, J. R., & Chaparro, B. S. (2016). The Development and Validation of the Game User Experience Satisfaction Scale (GUESS). Human Factors, 58(8), 1217–1247.
    Poole, S. (2011). Trigger happy: Videogames and the entertainment revolution. New York: Arcade Publishing, Inc.
    Strååt, B., & Verhagen, H. (2017). Using user created game reviews for sentiment analysis: A method for researching user attitudes. Paper presented at the Proceedings of Games-Human Interaction Italy ‘17 Workshop.
    Sievert, C., Shirley, K. (2014). LDAvis: a method for visualizing and interpreting topics. Interactive Language Learning, Visualization, and Interfaces, 63-70
    Sherrick, B., & Schmierbach, M. (2016). The Effects of Evaluative Reviews on Market Success in the Video Game Industry. The Computer Games Journal, 5(3-4), 185-194.
    Tirunillai, S., & Tellis, G. (2014). Mining marketing meaning from online chatter: Strategic brand analysis of big data using latent dirichlet allocation. Journal of Marketing Research, 51(4), 463-479
    Tong, Z., & Zhang, H. (2016). A Text Mining Research Based on LDA Topic Modelling. Computer Science & Information Technology. 6, 201-210.
    Washburn, M., Sathiyanarayanan, P., Nagappan M., Zimmermann, T., & Bird, C. (2016). What went right and what went wrong: An analysis of 155 postmortems from game development. Proceedings of the 38th International Conference on
    Software Engineering (ICSE), IEEE/ACM, 280-289
    吳尚緯(2013)。以文字探勘對行動遊戲進行軟體品質特徵分析。國立屏東科技大學工業管理系所碩士論文。屏東縣。取自:https://hdl.handle.net/11296/p2amee
    簡育銓(2021)。Newtalk新聞。大發利市!Steam 2020年再創各項紀錄新高。上網日期:2021年6月10日,取自:https://newtalk.tw/news/view/2021-01-14/523235

    下載圖示
    QR CODE