研究生: |
盧健瑋 Lu, Chien-Wei |
---|---|
論文名稱: |
數位學習環境與引導策略對高低先備知識高中生數學遞迴學習成效與動機之影響 Effects of Digital Learning Environment, Guiding Strategy and Prior Knowledge on Senior High School Students’ Learning Performance and Motivation in Learning of Recursion |
指導教授: |
陳明溥
Chen, Ming-Puu |
學位類別: |
碩士 Master |
系所名稱: |
資訊教育研究所 Graduate Institute of Information and Computer Education |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 120 |
中文關鍵詞: | 遞迴概念 、擴增實境 、虛擬實境 、引導策略 、體驗式學習 、先備知識 |
英文關鍵詞: | recursive concept, augmented reality, virtual reality, guiding strategy, experiential learning, prior knowledge |
DOI URL: | https://doi.org/10.6345/NTNU202202447 |
論文種類: | 學術論文 |
相關次數: | 點閱:285 下載:20 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討數位學習環境、引導策略及先備知識對高中生數學遞迴關係的學習成效與動機之影響。研究對象為高中二年級學生,採因子設計之準實驗研究法,有效樣本96人。自變項包含數位學習環境、引導策略及先備知識,數位學習環境分為擴增實境及虛擬實境;引導策略分為程序引導及反思引導;先備知識依學習者課前具備之能力分為高先備知識及低先備知識。依變項為學習成效與學習動機。
研究結果顯示:(1)在學習成效方面,就知識理解而言,擴增實境學習環境組在知識理解表現優於虛擬實境學習環境組,程序引導組優於反思引導組,且高先備知識組優於低先備知識組;就知識應用而言,擴增實境學習環境組在知識應用表現優於虛擬實境學習環境組,高先備知識組優於低先備知識組,而程序引導組及反思引導組在知識應用表現則無顯著差異。(2)學習動機方面,各實驗組對學習活動皆抱持正向的學習動機;其中,在期望成功面向,擴增實境學習環境組表現優於虛擬實境學習環境組、反思引導組優於程序引導組、而在先備知識二組間則無顯著差異。
The purpose of this study was to investigate the effects of type of digital learning environment, guiding strategy and prior knowledge on senior high school students’ learning performance and motivation in learning of recursion. A quasi-experimental design was employed and the independent variables were type of digital learning environment, guiding strategy, and prior knowledge. The participants were the eleventh graders and the effective sample size was 96. While the digital learning environments consisted of the augmented reality and the virtual reality, the guiding strategies included the procedural guidance and the reflective thinking guidance; the prior knowledge involved high and low prior knowledge. The dependent variables were the students’ learning performance and motivation.
The results showed that: (a) for knowledge comprehension performance, the augmented reality group outperformed the virtual reality group, the procedural guidance group outperformed the reflective thinking guidance group, and the high prior knowledge group outperformed low prior knowledge group; as for the knowledge application, the augmented reality group outperformed the virtual reality group and the high prior knowledge group outperformed the low prior knowledge group, whereas there was no significant difference between the procedural guidance group and the reflective thinking guidance group; and (b) as for learning motivation, all participants showed positive motivation toward the employed learning environments; in particular, regarding learner’s expectancy for success, the augmented reality group showed more positive effect than the virtual reality group did, and the reflective thinking guidance group showed more positive effect than the procedural guidance group did while there was no significant difference between the high prior knowledge group and the low prior knowledge group.
中文部分
任欣垚(2012)。數位學習環境融入體驗式學習策略與先備知識對國小學生質因數概念學習之影響。國立臺灣師範大學。未出版之碩士論文,臺北市。
吳勇賜(2005)。台北地區國一學生數、形規律單元錯誤類型之分析研究。國立高雄師範大學。未出版之碩士論文,高雄市。
吳嵐婷(2013)。摺紙對國三學生建構幾何推理證明的影響。國立臺灣師範大學。未出版之博士論文,臺北市。
林秀珍(1999)。杜威經驗概念之教育涵義。國立臺灣師範大學。未出版之博士論文,臺北市。
林思汝(2014)。擴增實境遊戲式學習與編碼策略對國小學生槓桿原理學習之影響。國立臺灣師範大學。未出版之碩士論文,台北市。
張霄亭(2004)。教材設計原理與實務。台北市:雙葉書廊。
教育部(2010)。普通高級中學課程綱要。台北市:教育部。
許瑋芷(2009)。數學表徵及數學自我效能對國小五年級學生樣式推理學習成效之影響。國立臺灣師範大學。未出版之碩士論文,台北市。
郭佩宜(2007)。我的教學行動-促進國小高年級學童數學概念知識與過程能力之實踐。國立屏東教育大學。未出版之博士論文,屏東縣。
陳勝楠(2003)。國一學生關於樣式解題歷程之分析研究。國立高雄師範大學。未出版之碩士論文,高雄市。
陳聖別(2012)。摺紙活動對尺規作圖學習之效益研究-以八年級學生補救教學為例。國立臺灣師範大學。未出版之博士論文,臺北市。
楊淑芬(1992)。數學史在數學教育中的重要性。數學傳播,十六卷三期,1-8。
廖邦捷(2014)。擴增型態與引導策略對高中電化學反應課程學習成效與動機之影響。國立臺灣師範大學。未出版之碩士論文,臺北市。
劉又瑄(2007)。大學會計系學生人格特質、學習動機、學習風格與學習成效之相關性研究。國立政治大學會計研究所碩士論文,未出版,台北市。
劉文斌(2009)。電子白板融入代數推理教學之研究。國立屏東教育大學。未出版之碩士論文,屏東縣。
蔡承哲(2012)。擴增實境與鷹架教學策略 對高中數學空間單元學習成效與動機之影響。國立臺灣師範大學。未出版之碩士論文,臺北市。
鄭嘉鴻(2014)。數位學習環境與鷹架策略對國中凸透鏡成像單元學習成效與動機之影響。國立臺灣師範大學。未出版之碩士論文,臺北市。
英文部分
Akdemir, O., & Koszalka, T. A. (2008). Investigating the relationships among instructional strategies and learning styles in online environments. Computers & Education, 50(4), 1451-1461.
Anderson, J. R., & Bower, G. H. (2014). Human associative memory. Psychology press.
Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators and Virtual Environments, 6(4), 355-385.
Baird, J. R., Fensham, P. J., Gunstone, R. F., & White, R. T. (1991). The importance of reflection in improving science teaching and learning. Journal of Research in Science Teaching, 28(2), 163-182.
Barsalou, L. W. (2008). Grounded cognition. Annu. Rev. Psychol., 59, 617-645.
Billinghurst, M., & Dunser, A. (2012). Augmented Reality in the Classroom. Computer, 45(7), 56-63.
Binks, T. (2009). The impact and potential future impact of augmented reality on education. Manuscript submitted for publication.
Booth, L. R. (1988). Children’s difficulties in beginning algebra. The ideas of algebra, K-12, 19, 20-32.
Bruner, J. S. (1966). Toward a theory of instruction. Harvard University Press.
Cadavieco, J. F., de Fatima Goulão, M., & Costales, A. F. (2012). Using augmented reality and m-learning to optimize students performance in higher education. Procedia-Social and Behavioral Sciences, 46, 2970-2977.
Chen, C. H., & Chiu, C. H. (2016). Collaboration scripts for enhancing metacognitive self-regulation and mathematics literacy. International Journal of Science and Mathematics Education, 14(2), 263-280.
Clark, R. E. (2009). How much and what type of guidance is optimal for learning from instruction? In S. Tobias & T. M. Duffy (Eds.), Constructivist theory applied to instruction: Success or failure? (pp. 158–183). New York: Routledge, Taylor and Francis.
Craig, A. B. (2013). Understanding augmented reality: Concepts and applications. Elsevier.
Dale, E. (1969). Audio-visual methods in teaching. New York: Holt, Rinehart & Winston.
Davis, E. A. (2000). Scaffolding students' knowledge integration: Prompts for reflection in KIE. International Journal of Science Education, 22(8), 819-837.
Dean Jr, D., & Kuhn, D. (2007). Direct instruction vs. discovery: The long view. Science Education, 91(3), 384-397.
Dewey, J. (1938). Experience and education. New York: Macmillan.
Dochy, F. J. R. C. (1994). Prior knowledge and learning, In T. Husen, & T. N. Postlethwaite(Eds.), The International Encyclopedia of Education (2nd ed.). (pp. 4698-4702). Oxford/New York: Pergamon Press.
Dochy, F. J. R. C. (1996). Assessment of domain-specific and domain-transceding prior knowledge: Entry assessment and the use of profile analysis. In M.Birenbaum & F. J. R. C. Dchy (Eds), Alternatives of assessment in achievement, learning process and prior learning (pp.227-264). Boston: Klumer.
Gagne, R. (1985). The Conditions of Learning and Theory of Instruction Robert Gagné. New York, NY: Holt, Rinehart and Winston.
Gallagher, S. (2015). How embodied cognition is being disembodied. The Philosophers' Magazine, (68), 96-102.
Han, I., & Black, J. B. (2011). Incorporating haptic feedback in simulation for learning physics. Computers & Education, 57(4), 2281-2290.
Hart, K. M., Brown, M. L., Kuchemann, D. E., Kerslake, D., Ruddock, G., & McCartney, M. (1981). Children's understanding of mathematics: 11-16 (p. 212). London: John Murray.
Heddens, J. W. (1984). Today's mathematics. Chicago: Science Research Associates.
Hill, J. R., & Hannafin, M. J. (2001). Teaching and learning in digital environments: The resurgence of resource-based learning. Educational Technology Research and Development, 49(3), 37-52.
Hsiao, K. F., Chen, N. S., & Huang, S. Y. (2012). Learning while exercising for science education in augmented reality among adolescents. Interactive Learning Environments, 20(4), 331-349.
Huang, C. (2005). Designing high-quality interactive multimedia learning modules. Computerized Medical Imaging and Graphics, 29(2), 223-233.
Johnson, M. (2008). The meaning of the body: Aesthetics of human understanding. University of Chicago Press.
Jonassen, D. H., & Grabowski, B. L. (2012). Handbook of individual differences, learning, and instruction. Routledge.
Kiili, K., & Lainema, T. (2006). Evaluations of an experiential gaming model: The realgame case. In Proceedings of World Conference on Educational Multimedia, Hypermedia and Telecommunications 2006 (pp. 2343-2350).
Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75-86.
Klahr, D., & Nigam, M. (2004). The equivalence of learning paths in early science instruction: Effects of direct instruction and discovery learning. Psychological Science, 15(10), 661-667.
Kolb, D. A., Boyatzis, R. E., & Mainemelis, C. (2001). Experiential learning theory: Previous research and new directions. Perspectives on Thinking, Learning, and Cognitive Styles, 1, 227-247.
Kong, S. C., & Kwok, L. F. (2005). A cognitive tool for teaching the addition/subtraction of common fractions: A model of affordances. Computers & Education, 45(2), 245-265.
Michael, K. Y. (2001). The effect of a computer simulation activity versus a hand-on activity on product creativity in technology education. Journal of Technology Education, 13(1), 31-43.
Lee, J. (1999). Effectiveness of computer-based instructional simulation: A meta analysis. International Journal of Instructional Media, 26(1), 71.
Liu, T. Y., Tan, T. H., & Chu, Y. L. (2009). Outdoor natural science learning with an RFID-supported immersive ubiquitous learning environment. Educational Technology & Society, 12(4), 161-175.
Loureiro, A., & Bettencourt, T. (2014). The use of virtual environments as an extended classroom–a case study with adult learners in tertiary education. Procedia Technology, 13, 97-106.
MacGregor, M., & Stacey, K. (1993). Cognitive models underlying students' formulation of simple linear equations. Journal for Research in Mathematics Education, 217-232.
Manches, A., & O’Malley, C. (2012). Tangibles for learning: a representational analysis of physical manipulation. Personal and Ubiquitous Computing, 16(4), 405-419.
Matlen, B. J., & Klahr, D. (2013). Sequential effects of high and low instructional guidance on children’s acquisition of experimentation skills: Is it all in the timing. Instructional Science, 41(3), 621-634.
McNeil, N., & Jarvin, L. (2007). When theories don't add up: Disentangling he manipulatives debate. Theory into Practice, 46(4), 309-316.
Mickelson, J., Canton, M., & Ju, W. (2011, June). Pattern poses: Embodied geometry with tangibles and computer visualization. In Proceedings of the 10th International Conference on Interaction Design and Children (pp. 242-245). ACM.
Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1994). Augmented reality: A class of displays on the reality-virtuality continuum. Proceeding of SPIE Conference Telemanipulator and Telepresence Technologies, 2351(34), 282-292.
Muijs, D., & Reynolds, D. (2001). Being or doing: The role of teacher behaviors and beliefs in school and teacher effectiveness in mathematics, a SEM analysis. In annual meeting of the American Educational Research Association, Seattle.
National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics, Reston, VA: National Council of Teachers of Mathematics.
O’Neil, H. F., Chung, G. K., Kerr, D., Vendlinski, T. P., Buschang, R. E., & Mayer, R. E. (2014). Adding self-explanation prompts to an educational computer game. Computers in Human Behavior, 30, 23-28.
Piaget, J. (1977). The development of thought: Equilibration of cognitive structures. Viking.
Picker, S. H. (1992). Using Discrete Mathematics to Give Remedial Students a Second Chance. Discrete Mathematics in the Schools, 36, 35-41.
Pirie, S., & Kieren, T. (1989). A Recursive Theory of Mathematical Understanding. For the learning of mathematics, 9(3), 7-11.
Pressley, M., & McCormick, C. (1995). Cognition, teaching, and assessment. New York: HarperCollins College Publishers.
Recht, D. R., & Leslie, L. (1988). Effect of prior knowledge on good and poor readers' memory of text. Journal of Educational Psychology, 80(1), 16.
Roblyer, M. D., Edwards, J., & Havriluk, M. A. (2002). Integrating educational technology into teaching.
Roy, M., & Chi, M. T. (2005). The self-explanation principle in multimedia learning. The Cambridge handbook of multimedia learning, 271-286.
Schmitz, B., Specht, M., & Klemke, R. (2012). An analysis of the educational potential of augmented reality games for learning. In M. Specht, J. Multisilta, & M. Sharples (Eds.), Proceedings of the 11th World Conference on Mobile and Contextual Learning 2012 (pp. 140-147). Aachen, Germany: CEUR Workshop Proceedings.
Schwartz, D. L., Chase, C. C., Oppezzo, M. A., & Chin, D. B. (2011). Practicing versus inventing with contrasting cases: The effects of telling first on learning and transfer. Journal of Educational Psychology, 103(4), 759.
Solomon, J. (1987). New thoughts on teacher education. Oxford Review of Education, 13(3), 267-274.
Sweller, J. (2008, September). Evolutionary bases of human cognitive architecture: implications for computing education. In Proceedings of the fourth international workshop on computing education research (pp. 1-2). ACM.
Thompson, J. M., Nuerk, H. C., Moeller, K., & Kadosh, R. C. (2013). The link between mental rotation ability and basic numerical representations. Acta Psychologica, 144(2), 324-331.
Trey, L., & Khan, S. (2008). How science students can learn about unobservable phenomena using computer-based analogies. Computers & Education, 51(2), 519-529.
Ucar, S. & Trundle, K. C. (2011). Conducting guided inquiry in science classes using authentic, archived, web-based data. Computers & Education, 57(2), 1571-1582.
Veerman, A. L., Andriessen, J. E., & Kanselaar, G. (2000). Learning through synchronous electronic discussion. Computers & Education, 34(3), 269-290.
Wilson, M. (2001). The case for sensorimotor coding in working memory. Psychonomic Bulletin & Review, 8(1), 44-57.
Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9(4), 625-636.
Zacharia, Z. C. (2015). Examining whether touch sensory feedback is necessary for science learning through experimentation: A literature review of two different lines of research across K-16. Educational Research Review, 16, 116-137.