簡易檢索 / 詳目顯示

研究生: 白孝天
Pai, Hsiao-Tien
論文名稱: 以理論計算方法探討二氧化碳在混合價態的氧化亞銅表面之二碳聚合反應
A Computational Exploration on CO2 Reduction via C2 dimerization on Mixed-Valence Cu2O Surface
指導教授: 蔡明剛
Tsai, Ming-Kang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 51
中文關鍵詞: 理論計算二氧化碳二氧化碳還原氧化銅衍生物
英文關鍵詞: Theoretical calculations, carbon dioxide, carbon dioxide reduction, copper oxide derivatives
DOI URL: http://doi.org/10.6345/NTNU201900281
論文種類: 學術論文
相關次數: 點閱:195下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 通過理論計算研究氧化銅材料上二氧化碳還原的電催化反應。在先前的文獻中,使用混合價態的銅氧化物作為催化劑容易發生一氧化碳的二聚化反應,這些材料包括氧化銅和氧化亞銅,後者是本研究的重點。 首先,通過觀察隨著氧空缺濃度增加而造成的形成能變化,對三個不同的表面做塞選,分別為Cu2O (100),Cu2O(110)和Cu2O(111)表面。 我們發現Cu2O(110)表面在所有考慮的表面中最為穩定。此外,我們研究了C-C偶聯反應性與Cu2O(110)的氧空缺之間的相關性。我們發現,當表面的Cu+ / Cu0的比例為1:1時,上述反應最有可能發生,能障為0.71eV,為-0.37eV放熱反應。且也解釋了為何在氧化銅衍生物表面的對於乙醇有較高的產物選擇性。

    The electrochemical reduction of CO2 (CO2RR) on copper oxide materials is investigated by theoretical calculations. In literature, C2 dimerization occurs readily with mixed valence copper oxides as catalyst, these materials include CuO and Cu2O, the latter of which is the focus of this study. First, three different surfaces, Cu2O (100), Cu2O (110), and Cu2O (111) were screened for stability, by observing the variation of formation energy as the amount of vacancies changed. We discovered that the Cu2O (110) surface the most stable among the surfaces considered. Furthermore, we examined the correlation between the reactivity of C-C coupling and the oxygen vacancies of Cu2O (110). We found that the aforementioned reaction is most likely to occur when the ratio of Cu0/Cu+1 is 1:1, with the energy barrier at 0.71eV, with a ΔE of -0.37eV. We also explain why there is a higher product selectivity for ethanol on the surface of the copper oxide derivative.

    中文摘要 i 英文摘要 ii 總目錄 iii 圖目錄 v 表目錄 v 第一章 緒論 1 第二章 理論與計算方法 8 §2-1-1密度泛函理論(Density functional theory (DFT) 8 §2-1-2局部密度近似法 (Local Density Approximation, LDA) 11 §2-1-3廣義梯度近似法 (Generalized Gradient Approximation, GGA) 12 §2-1-4週期性邊界條件 (periodic boundary condition) 13 §2-1-5布洛赫定理(Bloch Theorem) 14 §2-1-6贗勢(pseudopotential) 16 §2-1-7VASP計算軟體 18 §2-1-8擾動彈簧模型(Nudged Elastic Band;NEB) 19 §2-1-9態密度(Density of state, DOS) 21 §2-1-10電子局域化函數(Electron localization function, ELF) 22 §2-2-1分子力學 (Molecular Mechanics, MM) 22 §2-2-2分子動力學(Molecular Dynamic, MD) 23 §2-2-3Lammps 25 §2-2-4分子動力學模擬 25 §2-2-5Nosé-Hoover恆溫器 25 §2-3-6-2Ewald summation 26 第三章 結果與討論 27 一、混合價態之氧化亞銅表面探討: 27 二、一氧化碳在混合價態氧化亞銅活性位置: 35 三、一氧化碳在混合價態氧化亞銅表面進行二聚化反應: 39 四、二氧化碳在氧化亞銅混合價態表面還原反應路徑: 43 五、一氧化碳二聚化反應修正: 46 總結 48 參考文獻 49

    1. Boden, T. A., G. Marland, and R.J. Andres. Global, Regional, and National Fossil-Fuel CO2Emissions.
    2. Earth, B. Global Temperature Report for 2017. http://berkeleyearth.org/global-temperatures-2017/.
    3. Yoshio Hori, A. M., Ryutaro Takahashi, and Shin Suzuki, PRODUCTION DIOXIDE OF METHANE AND ETHYLENE AT COPPER ELECTRODE IN ELECTROCHEMICAL REDUCTION IN AQUEOUS HYDROGENCARBONATE SOLUTION. Chem. Lett. 1986, 897.
    4. Yoshio Hori, A. M., Ryutaro Takahashi, and Shin Suzuki, Enhanced Formation of Ethylene and Alcohols at Ambient Temperature and Pressure in Electrochemical Reduction of Carbon Dioxide at a Copper Electrode. J. Chem. Soc. 1988, (1), 17-19.
    5. Yoshio Hori, A. M., Ryutaro Takahashi, PRODUCTION OF CO AND CH4 IN ELECTROCHEMICAL REDUCTION OF CO2 AT METAL ELECTRODES IN AQUEOUS HYDROGENCARBONATE SOLUTION. Chem. Letter. 1989, 14, 11.
    6. Hori Yoshio , K. K., Suzuki Shin Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution. Chem. Lett. 1985, 1695-1698.
    7. Schouten, K. J. P.; Kwon, Y.; van der Ham, C. J. M., et al., A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem. sci. 2011, 2 (10).
    8. Montoya, J. H.; Shi, C.; Chan, K., et al., Theoretical Insights into a CO Dimerization Mechanism in CO2 Electroreduction. J. Phys. Chem. Lett. 2015, 6 (11), 2032-7.
    9. Perez-Gallent, E.; Figueiredo, M. C.; Calle-Vallejo, F., et al., Spectroscopic Observation of a Hydrogenated CO Dimer Intermediate During CO Reduction on Cu(100) Electrodes. Angew. Chem. Int. Ed. Engl. 2017, 56 (13), 3621-3624.
    10. Xiao, H.; Cheng, T.; Goddard, W. A., 3rd, Atomistic Mechanisms Underlying Selectivities in C(1) and C(2) Products from Electrochemical Reduction of CO on Cu(111). J. Am. Chem. Soc. 2017, 139 (1), 130-136.
    11. Calle-Vallejo, F.; Koper, M. T., Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew. Chem. Int. Ed. Engl. 2013, 52 (28), 7282-5.
    12. Montoya, J. H.; Peterson, A. A.; Nørskov, J. K., Insights into C-C Coupling in CO2 Electroreduction on Copper Electrodes. ChemCatChem. 2013, 5 (3), 737-742.
    13. Cheng, T.; Xiao, H.; Goddard, W. A., 3rd, Reaction Mechanisms for the Electrochemical Reduction of CO2 to CO and Formate on the Cu(100) Surface at 298 K from Quantum Mechanics Free Energy Calculations with Explicit Water. J. Am. Chem. Soc. 2016, 138 (42), 13802-13805.
    14. Roberts, F. S.; Kuhl, K. P.; Nilsson, A., High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew. Chem. Int. Ed. Engl. 2015, 54 (17), 5179-82.
    15. Ren, D.; Deng, Y.; Handoko, A. D., et al., Selective Electrochemical Reduction of Carbon Dioxide to Ethylene and Ethanol on Copper(I) Oxide Catalysts. ACS Catal. 2015, 5 (5), 2814-2821.
    16. Feng, X.; Jiang, K.; Fan, S., et al., A Direct Grain-Boundary-Activity Correlation for CO Electroreduction on Cu Nanoparticles. ACS Cent Sci. 2016, 2 (3), 169-74.
    17. Zheng, Y.; Vasileff, A.; Zhou, X., et al., Understanding the Roadmap for Electrochemical Reduction of CO2 to Multi-Carbon Oxygenates and Hydrocarbons on Copper-Based Catalysts. J. Am. Chem. Soc. 2019, 141 (19), 7646-7659.
    18. Kas, R.; Kortlever, R.; Milbrat, A., et al., Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons. Phys. Chem. Chem. Phys. 2014, 16 (24), 12194-201.
    19. Li, L.; Zhang, R.; Vinson, J., et al., Imaging Catalytic Activation of CO2 on Cu2O (110): A First-Principles Study. Chem. Mater. 2018, 30.
    20. Lum, Y.; Ager, J. W., Stability of Residual Oxides in Oxide-Derived Copper Catalysts for Electrochemical CO2 Reduction Investigated with (18) O Labeling. Angew. Chem. Int. Ed. Engl. 2018, 57 (2), 551-554.
    21. Li, C. W.; Ciston, J.; Kanan, M. W., Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 2014, 508 (7497), 504-7.
    22. Lum, Y.; Yue, B.; Lobaccaro, P., et al., Optimizing C–C Coupling on Oxide-Derived Copper Catalysts for Electrochemical CO2 Reduction. J. Phys. Chem. C 2017, 121 (26), 14191-14203.
    23. Schouten, K. J. P.; Pérez Gallent, E.; Koper, M. T. M., The influence of pH on the reduction of CO and CO2 to hydrocarbons on copper electrodes. J. Electroanal. Chem. 2014, 716, 53-57.
    24. Mistry, H.; Varela, A. S.; Bonifacio, C. S., et al., Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 2016, 7, 12123.
    25. Kim, J. Y.; Rodriguez, J. A.; Hanson, J. C., et al., Reduction of CuO and Cu2O with H2: H Embedding and Kinetic Effects in the Formation of Suboxides. J. Am. Chem. Soc. 2003, 125 (35), 10684-10692.
    26. Martić, N.; Reller, C.; Macauley, C., et al., Paramelaconite-Enriched Copper-Based Material as an Efficient and Robust Catalyst for Electrochemical Carbon Dioxide Reduction. Adv. Energy Mater. 2019, 0 (0), 1901228.
    27. Kohn, P. H. a. W., InhomogeIIeous Electron Gas. Phys. Rev. 1964, 136, B864-B871.
    28. Sham, W. K. a. L. J., Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, 1133-1138.
    29. Monkhorst, H. J.; Pack, J. D., Special points for Brillouin-zone integrations. Physical Review B 1976, 13 (12), 5188-5192.
    30. Zhou, Y.; Che, F.; Liu, M., et al., Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 2018, 10 (9), 974-980.
    31. Henkelman, G.; Jónsson, H., Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113 (22), 9978-9985.
    32. Henkelman, G.; Uberuaga, B. P.; Jónsson, H., A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113 (22), 9901-9904.
    33. Huang, I. S.; Tsai, M.-K., Interplay between Polarizability and Hydrogen Bond Network of Water: Reparametrizing the Flexible Single-Point-Charge Water Model by the Nonlinear Adaptive Force Matching Approach. J. Phys. Chem. A 2018, 122 (19), 4654-4662.
    34. Chang, C. C.; Li, E. Y.; Tsai, M. K., A computational exploration of CO2 reduction via CO dimerization on mixed-valence copper oxide surface. Phys. Chem. Chem. Phys. 2018, 20 (25), 16906-16909.

    無法下載圖示 本全文未授權公開
    QR CODE