簡易檢索 / 詳目顯示

研究生: 唐漢軒
Tang, Han-Hsuan
論文名稱: 透過抑制穀胱苷肽過氧化酶4誘導Sorafenib阻抗之人類肝癌細胞株Huh7進行鐵依賴型細胞死亡
Induction of Ferroptosis by GPX4-Inactivation in Sorafenib Resistant Human Hepatocellular Carcinoma Huh7 Cell Line
指導教授: 蘇純立
Su, Chun-Li
學位類別: 碩士
Master
系所名稱: 營養科學碩士學位學程
Graduate Program of Nutrition Science
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 98
中文關鍵詞: 穀胱苷肽過氧化酶4肝癌鐵依賴型死亡細胞自噬鐵蛋白蕾莎瓦®
英文關鍵詞: Iron, Glutathione peroxidase 4, Hepatocellular carcinoma, Ferroptosis, Autophagy, Ferritin, Sorafenib resistance
DOI URL: http://doi.org/10.6345/NTNU202001032
論文種類: 學術論文
相關次數: 點閱:402下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

肝癌是全世界主要的癌症死因之一。Sorafenib (蕾莎瓦®)為一種多激酶抑制劑,被許可做為肝癌病人的第一線藥物;然而,癌細胞產生的抗藥性減弱sorafenib的療效。由於對sorafenib阻抗的肝癌也對於細胞凋亡產生阻抗,所以探尋其它調控型細胞死亡是非常重要。鐵依賴型細胞死亡為一新穎的鐵依賴型非凋亡的調控型細胞死亡,已被報導可有效殺死多種癌症部位的藥物阻抗細胞。鐵依賴型死亡具有以下特徵:脂質過氧化修復功能受損、產生氧化還原活躍的鐵離子、以及多元不飽和脂肪酸的氧化。透過整合型生物資訊分析,我們發現鐵依賴型死亡參與肝癌細胞對sorafenib的阻抗,以及發現穀胱苷肽過氧化酶4 (GPX4) 為癌症的良好預後指標;此外, sorafenib阻抗的人類肝癌細胞株Huh7 (Huh7R) 相對Huh7具有較少的GPX4表現、異常的鐵恆定,以及較高的ACSL4表現,且對於GPX4抑制劑1S,3R-RSL3 (RSL3) 所誘導的鐵依賴型死亡更敏感。而且,添加細胞自噬抑制劑Bafilomycin A1可緩解在Huh7R中抑制GPX4所造成的鐵依賴型死亡。機轉層面而言,鐵蛋白藉由溶酶體降解提供具細胞利用性的鐵增強抑制GPX4所誘導的鐵依賴型死亡。總結而言,本研究證明抑制GPX4所誘導的鐵依賴型死亡是個有潛力用於對抗sorafenib阻抗肝癌的策略。

Hepatocellular carcinoma (HCC) has been one of the leading causes of cancer death worldwide. Sorafenib (NEXAVAR®), a multikinase inhibitor, has been approved as a first-line systemic therapeutic for patients with HCC; however, its efficacy is compromised by the chemoresistance of the tumor cells. Since sorafenib resistant HCC are defective in apoptotic cell death, exploiting alternative regulated cell death is of paramount. Ferroptosis, a novel iron-dependent nonapoptotic regulated cell death, which possesses characteristics of impaired lipid peroxide repair, redox active iron, and the oxidation of polyunsaturated fatty acids has been reported to effectively kill the drug resistant cancer cells from broad range of origins. In the present study, by using integrative bioinformatics analysis, ferroptosis was found to be involved in the modulation of sorafenib resistant HCC cells. We found that glutathione peroxidase 4 (GPX4) is a favorable prognostic factor in cancer survival via analyzing public database; furthermore, sorafenib resistant human HCC Huh7 cell line (Huh7R) having lower expression of GPX4, dysregulated iron homeostasis, and higher expression of acyl-CoA synthetase long-chain family member 4 (ACSL4) showed higher sensitivity to the ferroptosis induction exerted by 1S,3R-RSL3 (RSL3) which is a GPX4 inhibitor compared to the parental Huh7 cells. Besides, the GPX4-inactivation-induced ferroptosis in Huh7R could be attenuated by lysosomal blocker Bafilomycin A1. Mechanistically, lysosomal degradation of ferritin may confer sensitivity to GPX4-inactivation-induced ferroptosis by providing accessible iron as evidenced by western blotting. In conclusion, we provided evidence for the first time that GPX4-inactivation-induced ferroptosis is a promising strategy to tackle with sorafenib resistant HCC.

Chapter 1. LITERATURE REVIEW 1 1.1 Epidemiology of liver cancer 1 1.2 Sorafenib (NEXAVAR®) 2 1.2.1 Molecular mechanisms 3 1.2.2 Clinical trials 4 1.2.3 Sorafenib resistance 4 1.3 Apoptosis 8 1.4 Autophagy 9 1.4.1 Autophagy happens in a sequential fashion 10 1.4.2 Signaling pathway modulating autophagy 11 1.5 Ferroptosis 12 1.5.1 The hallmarks of ferroptosis 13 1.5.2 The mechanisms regulating ferroptosis 19 1.6 Ferroptosis on mesenchymal-like and drug resistance cancer cells 24 Chapter 2. OBJECTIVES 26 Chapter 3. MATERIALS AND METHODS 29 3.1 Cell culture 29 3.2 Sulforhodamine B (SRB) assay for cell population growth analysis 32 3.3 Lactate dehydrogenase (LDH) activity assay 33 3.4 Western blotting 35 3.5 Bioinformatics analysis using online database 39 3.6 C11-BODIPY581/591 staining for lipid ROS analysis 40 3.7 Phen green SK staining for labile iron analysis 41 3.8 Statistical analysis 42 Chapter 4. RESULTS 43 4.1 Huh7R was resistant to the growth inhibition and pro-apoptotic effect of sorafenib and exhibited higher basal autophagic activity 43 4.2 Bioinformatics analysis revealed the involvement of ferroptosis in the sorafenib resistance of Huh7 cells and downregulation of GPX4, a favorable prognostic factor in patients with cancer, in Huh7R cells. 49 4.3 Ferroptosis induced by GPX4-inactivation was more prominent in Huh7R cells 54 4.4 Lysosomal degradation of ferritin and dysregulated iron homeostasis promoted GPX4-inactivation-induced ferroptosis 60 4.5 RSL3 increased the sensitivity of Huh7R to the growth inhibition of sorafenib 71 Chapter 5. DISCUSSION 73 Chapter 6. CONCLUSIONS 80 BIBLIOGRAPHY 81

Anderson, E. R., & Shah, Y. M. (2013). Iron homeostasis in the liver. Comprehensive Physiology, 3(1), 315-330.
Asano, T., Komatsu, M., Yamaguchi-Iwai, Y., Ishikawa, F., Mizushima, N., & Iwai, K. (2011). Distinct mechanisms of ferritin delivery to lysosomes in iron-depleted and iron-replete cells. Molecular and cellular biology, 31(10), 2040-2052.
Azad, M. B., Chen, Y., & Gibson, S. B. (2009). Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment. Antioxidants & redox signaling, 11(4), 777-790.
Bhatt, K. V., Spofford, L. S., Aram, G., McMullen, M., Pumiglia, K., & Aplin, A. E. (2005). Adhesion control of cyclin D1 and p27 Kip1 levels is deregulated in melanoma cells through BRAF-MEK-ERK signaling. Oncogene, 24(21), 3459.
Bi, J., Yang, S., Li, L., Dai, Q., Borcherding, N., Wagner, B. A., & Meng, X. (2019). Metadherin enhances vulnerability of cancer cells to ferroptosis. Cell death & disease, 10(10), 1-14.
Bradley, J. M., Le Brun, N. E., & Moore, G. R. (2016). Ferritins: furnishing proteins with iron. JBIC Journal of Biological Inorganic Chemistry, 21(1), 13-28
Brash, A. R. (1999). Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. Journal of Biological Chemistry, 274(34), 23679-23682.
Bridges, R. J., Natale, N. R., & Patel, S. A. (2012). System xc‐cystine/glutamate antiporter: an update on molecular pharmacology and roles within the CNS. British journal of pharmacology, 165(1), 20-34.
Brigelius-Flohé, R. (2006). Glutathione peroxidases and redox-regulated transcription factors. Biological chemistry, 387(10/11), 1329-1335.
Carriere, A., Romeo, Y., Acosta-Jaquez, H. A., Moreau, J., Bonneil, E., Thibault, P., & Roux, P. P. (2011). ERK1/2 phosphorylate Raptor to promote Ras-dependent activation of mTOR complex 1 (mTORC1). Journal of Biological Chemistry, 286(1), 567-577.
Chen, J., Ding, C., Chen, Y., Hu, W., Lu, Y., Wu, W & Xie, H. (2020). ACSL4 promotes hepatocellular carcinoma progression via c-Myc stability mediated by ERK/FBW7/c-Myc axis. Oncogenesis, 9(4), 1-18
Cheng, A. L., Kang, Y. K., Chen, Z., Tsao, C. J., Qin, S., Kim, J. S., & Xu, J. (2009). Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. The lancet oncology, 10(1), 25-34.
Chen, R. J., Ho, C. T., & Wang, Y. J. (2010). Pterostilbene induces autophagy and apoptosis in sensitive and chemoresistant human bladder cancer cells. Molecular nutrition & food research, 54(12), 1819-1832.
Chen, D. S., Hsu, N. H. M., Sung, J. L., Hsu, T. C., Hsu, S. T., Kuo, Y. T., & Shih, Y. T. (1987). A mass vaccination program in Taiwan against hepatitis B virus infection in infants of hepatitis B surface antigen—carrier mothers. Jama, 257(19), 2597-2603.
Chen, K. F., Chen, H. L., Tai, W. T., Feng, W. C., Hsu, C. H., Chen, P. J., & Cheng, A. L. (2011). Activation of phosphatidylinositol 3-kinase/Akt signaling pathway mediates acquired resistance to sorafenib in hepatocellular carcinoma cells. Journal of Pharmacology and Experimental Therapeutics, 337(1), 155-161.
Chen, W., Sun, Z., Wang, X. J., Jiang, T., Huang, Z., Fang, D., & Zhang, D. D. (2009). Direct interaction between Nrf2 and p21Cip1/WAF1 upregulates the Nrf2-mediated antioxidant response. Molecular cell, 34(6), 663-673.
Chiang, C. J., Lo, W. C., Yang, Y. W., You, S. L., Chen, C. J., & Lai, M. S. (2016). Incidence and survival of adult cancer patients in Taiwan, 2002–2012. Journal of the Formosan Medical Association, 115(12), 1076-1088.
Chiang, C. J., Yang, Y. W., You, S. L., Lai, M. S., & Chen, C. J. (2013). Thirty-year outcomes of the national hepatitis B immunization program in Taiwan. Jama, 310(9), 974-976.
Chiang, C. J., Yang, Y. W., Chen, J. D., You, S. L., Yang, H. I., Lee, M. H., & Chen, C. J. (2015). Significant reduction in end‐stage liver diseases burden through the national viral hepatitis therapy program in Taiwan. Hepatology, 61(4), 1154-1162.
Chiang, H. L., Plant, C. P., & Dice, J. F. (1989). A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science, 246(4928), 382-385.
Cook, J. D. (1990). Adaptation in iron metabolism. The American journal of clinical nutrition, 51(2), 301-308.
Corcelle, E., Nebout, M., Bekri, S., Gauthier, N., Hofman, P., Poujeol, P., & Mograbi, B. (2006). Disruption of Autophagy at the Maturation Step by the Carcinogen Lindane Is Associated with the Sustained Mitogen-Activated Protein Kinase/Extracellular Signal–Regulated Kinase Activity. Cancer research, 66(13), 6861-6870.
Cuervo, A. M. (2010). Chaperone-mediated autophagy: selectivity pays off. Trends in Endocrinology & Metabolism, 21(3), 142-150.
Dattilo, M. A., Benzo, Y., Herrera, L. M., Prada, J. G., Castillo, A. F., Orlando, U. D & Maloberti, P. M. (2019). Regulatory mechanisms leading to differential Acyl-CoA synthetase 4 expression in breast cancer cells. Scientific reports, 9(1), 1-13.
De Domenico, I., Vaughn, M. B., Li, L., Bagley, D., Musci, G., Ward, D. M., & Kaplan, J. (2006). Ferroportin‐mediated mobilization of ferritin iron precedes ferritin degradation by the proteasome. The EMBO Journal, 25(22), 5396-5404
Dhiman, G., Srivastava, N., Goyal, M., Rakha, E., Lothion-Roy, J., Mongan, N. P., & Baranwal, M. (2019). Metadherin: A therapeutic target in multiple cancers. Frontiers in oncology, 9, 349.
Dixon, S. J., Lemberg, K. M., Lamprecht, M. R., Skouta, R., Zaitsev, E. M., Gleason, C. E., & Morrison III, B. (2012). Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 149(5), 1060-1072.
Dixon, S. J., Patel, D. N., Welsch, M., Skouta, R., Lee, E. D., Hayano, M., & Stockwell, B. R. (2014). Pharmacological inhibition of cystine–glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife, 3, e02523.
Dixon, S. J., Winter, G. E., Musavi, L. S., Lee, E. D., Snijder, B., Rebsamen, M., & Stockwell, B. R. (2015). Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS chemical biology, 10(7), 1604-1609.
Dolma, S., Lessnick, S. L., Hahn, W. C., & Stockwell, B. R. (2003). Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer cell, 3(3), 285-296.
Doll, S., Proneth, B., Tyurina, Y. Y., Panzilius, E., Kobayashi, S., Ingold, I., ... & Prokisch, H. (2017). ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nature chemical biology, 13(1), 91-98.
Du, J., Wagner, B. A., Buettner, G. R., & Cullen, J. J. (2015). Role of labile iron in the toxicity of pharmacological ascorbate. Free Radical Biology and Medicine, 84, 289-295.
Ediriweera, M. K., Tennekoon, K. H., & Samarakoon, S. R. (2019, May). Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: Biological and therapeutic significance. In Seminars in cancer biology. Academic Press.
Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicologic pathology, 35(4), 495-516.
Ezzoukhry, Z., Louandre, C., Trécherel, E., Godin, C., Chauffert, B., Dupont, S., & Galmiche, A. (2012). EGFR activation is a potential determinant of primary resistance of hepatocellular carcinoma cells to sorafenib. International journal of cancer, 131(12), 2961-2969.
Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I, Bray F (2018). Global Cancer Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer. Available from: https://gco.iarc.fr/today, accessed [24 06 2019].
Fleury, C., Mignotte, B., & Vayssière, J. L. (2002). Mitochondrial reactive oxygen species in cell death signaling. Biochimie, 84(2-3), 131-141.
Forman, H. J., Fukuto, J. M., Miller, T., Zhang, H., Rinna, A., & Levy, S. (2008). The chemistry of cell signaling by reactive oxygen and nitrogen species and 4-hydroxynonenal. Archives of biochemistry and biophysics, 477(2), 183-195.
Forcina, G. C., & Dixon, S. J. (2019). GPX4 at the crossroads of lipid homeostasis and ferroptosis. Proteomics, 19(18), 1800311.
Galluzzi, L., Vitale, I., Aaronson, S. A., Abrams, J. M., Adam, D., Agostinis, P., & Annicchiarico-Petruzzelli, M. (2018). Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death & Differentiation, 25(3), 486-541.
Gao, M., Monian, P., Quadri, N., Ramasamy, R., & Jiang, X. (2015). Glutaminolysis and transferrin regulate ferroptosis. Molecular cell, 59(2), 298-308.
Gao, M., Monian, P., Pan, Q., Zhang, W., Xiang, J., & Jiang, X. (2016). Ferroptosis is an autophagic cell death process. Cell research, 26(9), 1021-1032.
Gao, M., Yi, J., Zhu, J., Minikes, A. M., Monian, P., Thompson, C. B., & Jiang, X. (2019). Role of mitochondria in ferroptosis. Molecular cell, 73(2), 354-363.
Gewirtz, D. A. (2014). The four faces of autophagy: implications for cancer therapy. Cancer research, 74(3), 647-651.
Gropper, S. S., & Smith, J. L. (2012). Advanced nutrition and human metabolism. Cengage Learning, page.217&470.
Guerra, F., Arbini, A. A., & Moro, L. (2017). Mitochondria and cancer chemoresistance. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1858(8), 686-699.
Guo, G., Yao, W., Zhang, Q., & Bo, Y. (2013). Oleanolic acid suppresses migration and invasion of malignant glioma cells by inactivating MAPK/ERK signaling pathway. PloS one, 8(8), e72079.
Gwinn, D. M., Shackelford, D. B., Egan, D. F., Mihaylova, M. M., Mery, A., Vasquez, D. S., & Shaw, R. J. (2008). AMPK phosphorylation of raptor mediates a metabolic checkpoint. Molecular cell, 30(2), 214-226.
Haeggström, J. Z., & Funk, C. D. (2011). Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chemical reviews, 111(10), 5866-5898.
Hagiwara, S., Kudo, M., Nagai, T., Inoue, T., Ueshima, K., Nishida, N., & Sakurai, T. (2012). Activation of JNK and high expression level of CD133 predict a poor response to sorafenib in hepatocellular carcinoma. British journal of cancer, 106(12), 1997.
Hangauer, M. J., Viswanathan, V. S., Ryan, M. J., Bole, D., Eaton, J. K., Matov, A., & McCormick, F. (2017). Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature, 551(7679), 247-250.
Harayama, T., & Riezman, H. (2018). Understanding the diversity of membrane lipid composition. Nature Ecology & Evolution, 1-18.
Harlow, E. D., & Lane, D. (1988). A laboratory manual. New York: Cold Spring Harbor Laboratory, 579.
Hatfield, D. L., Tsuji, P. A., Carlson, B. A., & Gladyshev, V. N. (2014). Selenium and selenocysteine: roles in cancer, health, and development. Trends in biochemical sciences, 39(3), 112-120.
Hattori, H., Imai, H., Furuhama, K., Sato, O., & Nakagawa, Y. (2005). Induction of phospholipid hydroperoxide glutathione peroxidase in human polymorphonuclear neutrophils and HL60 cells stimulated with TNF-α. Biochemical and biophysical research communications, 337(2), 464-473.
Hayano, M., Yang, W. S., Corn, C. K., Pagano, N. C., & Stockwell, B. R. (2016). Loss of cysteinyl-tRNA synthetase (CARS) induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation. Cell Death & Differentiation, 23(2), 270-278.
He, C., & Levine, B. (2010). The beclin 1 interactome. Current opinion in cell biology, 22(2), 140-149.
Hou, W., Xie, Y., Song, X., Sun, X., Lotze, M. T., Zeh III, H. J., & Tang, D. (2016). Autophagy promotes ferroptosis by degradation of ferritin. Autophagy, 12(8), 1425-1428.
Hwang, Y. H., Choi, J. Y., Kim, S., Chung, E. S., Kim, T., Koh, S. S., & Park, Y. M. (2004). Over-expression of c-raf-1 proto-oncogene in liver cirrhosis and hepatocellular carcinoma. Hepatology Research, 29(2), 113-121.
Ingold, I., Berndt, C., Schmitt, S., Doll, S., Poschmann, G., Buday, K., & Mehr, L. (2018). Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell, 172(3), 409-422.
Istvan, E. S., & Deisenhofer, J. (2001). Structural mechanism for statin inhibition of HMG-CoA reductase. Science, 292(5519), 1160-1164.
Jewell, J. L., & Guan, K. L. (2013). Nutrient signaling to mTOR and cell growth. Trends in biochemical sciences, 38(5), 233-242.
Jiang, L., Kon, N., Li, T., Wang, S. J., Su, T., Hibshoosh, H., & Gu, W. (2015). Ferroptosis as a p53-mediated activity during tumour suppression. Nature, 520(7545), 57-62.
Jung, C. H., Jun, C. B., Ro, S. H., Kim, Y. M., Otto, N. M., Cao, J., & Kim, D. H. (2009). ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Molecular biology of the cell, 20(7), 1992-2003.
Kasid, U., Pfeifer, A., Brennan, T., Beckett, M., Weichselbaum, R. R., Dritschilo, A., & Mark, G. E. (1989). Effect of antisense c-raf-1 on tumorigenicity and radiation sensitivity of a human squamous carcinoma. Science, 243(4896), 1354-1356.
Kirchner, P., Bourdenx, M., Madrigal-Matute, J., Tiano, S., Diaz, A., Bartholdy, B. A & Cuervo, A. M. (2019). Proteome-wide analysis of chaperone-mediated autophagy targeting motifs. PLoS biology, 17(5), e3000301.
Knudsen, E. S., & Knudsen, K. E. (2008). Tailoring to RB: tumour suppressor status and therapeutic response. Nature reviews cancer, 8(9), 714-724.
Kiffin, R., Bandyopadhyay, U., & Cuervo, A. M. (2006). Oxidative stress and autophagy. Antioxidants & redox signaling, 8(1-2), 152-162.
Komatsu, M., Kurokawa, H., Waguri, S., Taguchi, K., Kobayashi, A., Ichimura, Y., & Kim, M. (2010). The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nature cell biology, 12(3), 213-223.
Kong, Y., Hu, L., Lu, K., Wang, Y., Xie, Y., Gao, L., & Wu, H. (2019). Ferroportin downregulation promotes cell proliferation by modulating the Nrf2–miR-17-5p axis in multiple myeloma. Cell Death & Disease, 10(9), 1-12.
Krol, A. (2002). Evolutionarily different RNA motifs and RNA–protein complexes to achieve selenoprotein synthesis. Biochimie, 84(8), 765-774.
Lachaier, E., Louandre, C., Godin, C., Saidak, Z., Baert, M., Diouf, M., & Galmiche, A. (2014). Sorafenib induces ferroptosis in human cancer cell lines originating from different solid tumors. Anticancer research, 34(11), 6417-6422.
Lee, G. H., Lee, W. J., Hur, J., Kim, E., Lee, H. G., & Seo, H. G. (2020). Ginsenoside Re Mitigates 6-Hydroxydopamine-Induced Oxidative Stress through Upregulation of GPX4. Molecules, 25(1), 188.
Lee, S. H., Kim, H. J., Kang, H. J., Lee, Y. J., Nam, H. S., & Bae, I. (2009). Reactive oxygen species generated by 17β-estradiol play a role in the up-regulation of GPX4 protein in MCF-7 breast cancer cells. Journal of Breast Cancer, 12(3), 134-141.
Lee, S. G., Su, Z. Z., Emdad, L., Sarkar, D., Franke, T. F., & Fisher, P. B. (2008). Astrocyte elevated gene-1 activates cell survival pathways through PI3K-Akt signaling. Oncogene, 27(8), 1114-1121.
Li, W. W., Li, J., & Bao, J. K. (2012). Microautophagy: lesser-known self-eating. Cellular and molecular life sciences, 69(7), 1125-1136.
Li, Y. J., Lei, Y. H., Yao, N., Wang, C. R., Hu, N., Ye, W. C., & Chen, Z. S. (2017). Autophagy and multidrug resistance in cancer. Chinese journal of cancer, 36(1), 52.
Liu, L., Cao, Y., Chen, C., Zhang, X., McNabola, A., Wilkie, D., & Carter, C. (2006). Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer research, 66(24), 11851-11858.
Llovet, J. M., Ricci, S., Mazzaferro, V., Hilgard, P., Gane, E., Blanc, J. F., & Schwartz, M. (2008). Sorafenib in advanced hepatocellular carcinoma. New England journal of medicine, 359(4), 378-390.
Llovet, J. M., Peña, C. E., Lathia, C. D., Shan, M., Meinhardt, G., & Bruix, J. (2012). Plasma biomarkers as predictors of outcome in patients with advanced hepatocellular carcinoma. Clinical Cancer Research, 18(8), 2290-2300.
Lo, J., Lau, E. Y. T., Ching, R. H. H., Cheng, B. Y. L., Ma, M. K. F., Ng, I. O. L., & Lee, T. K. W. (2015). Nuclear factor kappa B–mediated CD47 up‐regulation promotes sorafenib resistance and its blockade synergizes the effect of sorafenib in hepatocellular carcinoma in mice. Hepatology, 62(2), 534-545.
Louandre, C., Marcq, I., Bouhlal, H., Lachaier, E., Godin, C., Saidak, Z., & Chauffert, B. (2015). The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells. Cancer letters, 356(2), 971-977.
Lyons, J. F., Wilhelm, S., Hibner, B., & Bollag, G. (2001). Discovery of a novel Raf kinase inhibitor. Endocrine-related cancer, 8(3), 219-225.
Mancias, J. D., Wang, X., Gygi, S. P., Harper, J. W., & Kimmelman, A. C. (2014). Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature, 509(7498), 105-109.
Mancias, J. D., Vaites, L. P., Nissim, S., Biancur, D. E., Kim, A. J., Wang, X., & Harper, J. W. (2015). Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis. Elife, 4, e10308.
Manz, D. H., Blanchette, N. L., Paul, B. T., Torti, F. M., & Torti, S. V. (2016). Iron and cancer: recent insights. Annals of the New York Academy of Sciences, 1368(1), 149.
Marampon, F., Ciccarelli, C., & Zani, B. M. (2006). Down-regulation of c-Myc following MEK/ERK inhibition halts the expression of malignant phenotype in rhabdomyosarcoma and in non muscle-derived human tumors. Molecular cancer, 5(1), 31.
Marcucci, F., Stassi, G., & De Maria, R. (2016). Epithelial–mesenchymal transition: a new target in anticancer drug discovery. Nature reviews Drug discovery, 15(5), 311.
Mathow, D., Chessa, F., Rabionet, M., Kaden, S., Jennemann, R., Sandhoff, R., & Feuerborn, A. (2015). Zeb1 affects epithelial cell adhesion by diverting glycosphingolipid metabolism. EMBO reports, 16(3), 321-331.
Mauvezin, C., & Neufeld, T. P. (2015). Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion. Autophagy, 11(8), 1437-1438.
Mazure, N. M., & Pouysségur, J. (2010). Hypoxia-induced autophagy: cell death or cell survival?. Current opinion in cell biology, 22(2), 177-180.
Menon, S., Dibble, C. C., Talbott, G., Hoxhaj, G., Valvezan, A. J., Takahashi, H., & Manning, B. D. (2014). Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell, 156(4), 771-785.
Ministry of Health and Welfare, ROC. (2018). Cause of Death Statistics. Retrieved from https://www.mohw.gov.tw/cp-16-48057-1.html
Mizushima, N. (2007). Autophagy: process and function. Genes & development, 21(22), 2861-2873.
National Comprehensive Cancer Network. (2019) NCCN Clinical Practice Guidelines in Oncology Hepatobiliary Cancer. version2.2019.
Ogier-Denis, E., Pattingre, S., El Benna, J., & Codogno, P. (2000). Erk1/2-dependent phosphorylation of Gα-interacting protein stimulates its GTPase accelerating activity and autophagy in human colon cancer cells. Journal of Biological Chemistry, 275(50), 39090-39095.
O'Reilly, K. E., Rojo, F., She, Q. B., Solit, D., Mills, G. B., Smith, D., & Baselga, J. (2006). mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer research, 66(3), 1500-1508.
Orlando, U. D., Castillo, A. F., Medrano, M. A. R., Solano, A. R., Maloberti, P. M., & Podesta, E. J. (2019). Acyl-CoA synthetase-4 is implicated in drug resistance in breast cancer cell lines involving the regulation of energy-dependent transporter expression. Biochemical pharmacology, 159, 52-63.
Pap, E. H. W., Drummen, G. P. C., Winter, V. J., Kooij, T. W. A., Rijken, P., Wirtz, K. W. A., & Post, J. A. (1999). Ratio‐fluorescence microscopy of lipid oxidation in living cells using C11‐BODIPY581/591. FEBS letters, 453(3), 278-282.
Paul, B. T., Manz, D. H., Torti, F. M., & Torti, S. V. (2017). Mitochondria and Iron: current questions. Expert review of hematology, 10(1), 65-79.
Petiot, A., Ogier-Denis, E., Blommaart, E. F., Meijer, A. J., & Codogno, P. (2000). Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. Journal of Biological Chemistry, 275(2), 992-998.
Pecorino, L. (2012). Molecular biology of cancer: mechanisms, targets, and therapeutics. Oxford university press, page 134-136.
Qi, L., Wu, X. C., & Zheng, D. Q. (2019). Hydrogen peroxide, a potent inducer of global genomic instability. Current genetics, 1-5.
Roux, P. P., Shahbazian, D., Vu, H., Holz, M. K., Cohen, M. S., Taunton, J., & Blenis, J. (2007). RAS/ERK signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK and stimulates cap-dependent translation. Journal of Biological Chemistry, 282(19), 14056-14064.
Schott, C., Graab, U., Cuvelier, N., Hahn, H., & Fulda, S. (2015). Oncogenic RAS mutants confer resistance of RMS13 rhabdomyosarcoma cells to oxidative stress-induced ferroptotic cell death. Frontiers in oncology, 5, 131.
Sharma, S. V., Lee, D. Y., Li, B., Quinlan, M. P., Takahashi, F., Maheswaran, S., & Wong, K. K. (2010). A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell, 141(1), 69-80.
Shi, Y., Yan, H., Frost, P., Gera, J., & Lichtenstein, A. (2005). Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade. Molecular cancer therapeutics, 4(10), 1533-1540.
Shimizu, S., Takehara, T., Hikita, H., Kodama, T., Tsunematsu, H., Miyagi, T., & Hiramatsu, N. (2012). Inhibition of autophagy potentiates the antitumor effect of the multikinase inhibitor sorafenib in hepatocellular carcinoma. International journal of cancer, 131(3), 548-557.
Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., & Boyd, M. R. (1990). New colorimetric cytotoxicity assay for anticancer-drug screening. JNCI: Journal of the National Cancer Institute, 82(13), 1107-1112.
Song, X., Zhu, S., Chen, P., Hou, W., Wen, Q., Liu, J., & Lotze, M. T. (2018). AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc–activity. Current Biology, 28(15), 2388-2399.
Stewart, B. W. K. P., & Wild, C. P. (2014). World cancer report 2014.
Stone, J. R., & Collins, T. (2002). The role of hydrogen peroxide in endothelial proliferative responses. Endothelium, 9(4), 231-238.
Strohmaier, H., Hinghofer-Szalkay, H., & Schaur, R. J. (1995). Detection of 4-hydroxynonenal (HNE) as a physiological component in human plasma. Journal of lipid mediators and cell signalling, 11(1), 51-61.
Strumberg, D., Clark, J. W., Awada, A., Moore, M. J., Richly, H., Hendlisz, A. & Schwartz, B. (2007). Safety, pharmacokinetics, and preliminary antitumor activity of sorafenib: a review of four phase I trials in patients with advanced refractory solid tumors. Oncologist, 12(4).
Sun, X., Ou, Z., Chen, R., Niu, X., Chen, D., Kang, R., & Tang, D. (2016). Activation of the p62‐Keap1‐NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology, 63(1), 173-184.
Tanida, I., Ueno, T., & Kominami, E. (2004). LC3 conjugation system in mammalian autophagy. The international journal of biochemistry & cell biology, 36(12), 2503-2518.
Tarangelo, A., Magtanong, L., Bieging-Rolett, K. T., Li, Y., Ye, J., Attardi, L. D., & Dixon, S. J. (2018). p53 suppresses metabolic stress-induced ferroptosis in cancer cells. Cell reports, 22(3), 569-575.
Thomé, M. P., Filippi-Chiela, E. C., Villodre, E. S., Migliavaca, C. B., Onzi, G. R., Felipe, K. B., & Lenz, G. (2016). Ratiometric analysis of Acridine Orange staining in the study of acidic organelles and autophagy. Journal of cell science, 129(24), 4622-4632.
Torii, S., Shintoku, R., Kubota, C., Yaegashi, M., Torii, R., Sasaki, M., & Yamada, K. (2016). An essential role for functional lysosomes in ferroptosis of cancer cells. Biochemical Journal, 473(6), 769-777.
Torti, S. V., Manz, D. H., Paul, B. T., Blanchette-Farra, N., & Torti, F. M. (2018). Iron and cancer. Annual review of nutrition, 38, 97-125.
Ufer, C., Borchert, A., & Kuhn, H. (2003). Functional characterization of cis‐and trans‐regulatory elements involved in expression of phospholipid hydroperoxide glutathione peroxidase. Nucleic acids research, 31(15), 4293-4303.
Ungerleider, N., Han, C., Zhang, J., Yao, L., & Wu, T. (2017). TGFβ signaling confers sorafenib resistance via induction of multiple RTKs in hepatocellular carcinoma cells. Molecular carcinogenesis, 56(4), 1302-1311.
van Malenstein, H., Dekervel, J., Verslype, C., Van Cutsem, E., Windmolders, P., Nevens, F., & van Pelt, J. (2013). Long-term exposure to sorafenib of liver cancer cells induces resistance with epithelial-to-mesenchymal transition, increased invasion and risk of rebound growth. Cancer letters, 329(1), 74-83.
Viswanathan, V. S., Ryan, M. J., Dhruv, H. D., Gill, S., Eichhoff, O. M., Seashore-Ludlow, B., & Viswanathan, S. R. (2017). Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature, 547(7664), 453-457.
Walczak, M., & Martens, S. (2013). Dissecting the role of the Atg12–Atg5-Atg16 complex during autophagosome formation. Autophagy, 9(3), 424-425.
Ward, D. M., & Kaplan, J. (2012). Ferroportin-mediated iron transport: expression and regulation. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1823(9), 1426-1433.
Wang, J., & Wu, G. S. (2014). Role of autophagy in cisplatin resistance in ovarian cancer cells. Journal of Biological chemistry, 289(24), 17163-17173.
Warner, G. J., Berry, M. J., Moustafa, M. E., Carlson, B. A., Hatfield, D. L., & Faust, J. R. (2000). Inhibition of selenoprotein synthesis by selenocysteine tRNA [Ser] Sec lacking isopentenyladenosine. Journal of Biological Chemistry, 275(36), 28110-28119.
Wei, Y., Pattingre, S., Sinha, S., Bassik, M., & Levine, B. (2008). JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Molecular cell, 30(6), 678-688.
Wilhelm, S., Carter, C., Lynch, M., Lowinger, T., Dumas, J., Smith, R. A., & Kelley, S. (2006). Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nature reviews Drug discovery, 5(10), 835.
Wilhelm, S. M., Carter, C., Tang, L., Wilkie, D., McNabola, A., Rong, H., & Cao, Y. (2004). BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer research, 64(19), 7099-7109.
Wu, X., Deng, F., Li, Y., Daniels, G., Du, X., Ren, Q., ... & Zhang, D. (2015). ACSL4 promotes prostate cancer growth, invasion and hormonal resistance. Oncotarget, 6(42), 44849.
Wu, Z., Geng, Y., Lu, X., Shi, Y., Wu, G., Zhang, M., & Yuan, J. (2019). Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proceedings of the National Academy of Sciences, 116(8), 2996-3005.
Xi, G., Hu, X., Wu, B., Jiang, H., Young, C. Y., Pang, Y., & Yuan, H. (2011). Autophagy inhibition promotes paclitaxel-induced apoptosis in cancer cells. Cancer letters, 307(2), 141-148.
Xia, H., Lee, K. W., Chen, J., Kong, S. N., Sekar, K., Deivasigamani, A., & Hui, K. M. (2017). Simultaneous silencing of ACSL4 and induction of GADD45B in hepatocellular carcinoma cells amplifies the synergistic therapeutic effect of aspirin and sorafenib. Cell death discovery, 3(1), 1-10.
Xie, Y., Zhu, S., Song, X., Sun, X., Fan, Y., Liu, J., & Lotze, M. T. (2017). The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell reports, 20(7), 1692-1704.
Yagoda, N., Von Rechenberg, M., Zaganjor, E., Bauer, A. J., Yang, W. S., Fridman, D. J., & Smith, R. (2007). RAS–RAF–MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature, 447(7146), 865-869.
Yang, W. S., & Stockwell, B. R. (2008). Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chemistry & biology, 15(3), 234-245.
Yang, W. S., SriRamaratnam, R., Welsch, M. E., Shimada, K., Skouta, R., Viswanathan, V. S., & Brown, L. M. (2014). Regulation of ferroptotic cancer cell death by GPX4. Cell, 156(1-2), 317-331.
Yang, W. S., Kim, K. J., Gaschler, M. M., Patel, M., Shchepinov, M. S., & Stockwell, B. R. (2016). Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proceedings of the National Academy of Sciences, 113(34), E4966-E4975.
Yang, M., Chen, P., Liu, J., Zhu, S., Kroemer, G., Klionsky, D. J., & Tang, D. (2019). Clockophagy is a novel selective autophagy process favoring ferroptosis. Science advances, 5(7), eaaw2238.
Yoo, B. K., Emdad, L., Su, Z. Z., Villanueva, A., Chiang, D. Y., Mukhopadhyay, N. D., & Fisher, P. B. (2009). Astrocyte elevated gene-1 regulates hepatocellular carcinoma development and progression. The Journal of clinical investigation, 119(3), 465-477.
Zhang, Z., Zhou, X., Shen, H., Wang, D., & Wang, Y. (2009). Phosphorylated ERK is a potential predictor of sensitivity to sorafenib when treating hepatocellular carcinoma: evidence from an in vitro study. BMC medicine, 7(1), 41.
Zhai, B., Hu, F., Jiang, X., Xu, J., Zhao, D., Liu, B., & Qiao, H. (2014). Inhibition of Akt reverses the acquired resistance to sorafenib by switching protective autophagy to autophagic cell death in hepatocellular carcinoma. Molecular cancer therapeutics, 13(6), 1589-1598.
Zhu, K., Dai, Z., Pan, Q., Wang, Z., Yang, G. H., Yu, L., & Tao, Z. H. (2011). Metadherin promotes hepatocellular carcinoma metastasis through induction of epithelial–mesenchymal transition. Clinical cancer research, 17(23), 7294-7302.

無法下載圖示 電子全文延後公開
2025/08/17
QR CODE