簡易檢索 / 詳目顯示

研究生: 辜大維
論文名稱: 似單氧化酵素之三鐵金屬簇化物之研究
Monooxygenase-like Trinuclear Iron complex
指導教授: 陳炳宇
Chen, Ping-Yu
李位仁
Lee, Way-Zen
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 60
中文關鍵詞: 微粒體甲烷單氧化酵素三核鐵金屬簇化物催化
英文關鍵詞: particulate metnane monooxygenase, Trinuclear Iron complex, catalyst
論文種類: 學術論文
相關次數: 點閱:126下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 於先前實驗室研究結果,我們發展出配位基7-Dipy能與銅離子形成三核銅金屬簇離子化合物及三核錳金屬簇離子化合物,且在常溫常壓的狀態下,三核銅金屬簇離子化合物可加入雙氧水來有效催化環己烷(C6H14)的碳氫鍵(C-H鍵能99.3kcal/mol),將環己烷氧化成環己醇(C6H13OH)與環己酮(C6H12O)。三核錳金屬簇離子化合物則可加入TBHP來有效催化環己烷(C6H14)的碳氫鍵(C-H鍵能99.3kcal/mol),將環己烷氧化成環己醇(C6H13OH)與環己酮(C6H12O)。
    在我的研究當中,嘗試使用鐵作為配位金屬,將7-Dipy加入三當量的FeIICl2,藉由ESI-MS光譜圖判斷,證實生成三核鐵金屬簇化物[FeIIFeIII(μ-O)FeIII(7-Dipy)(Cl)2]Cl2 (2) ,同時也對此三核鐵簇化物進行UV、CV和EPR的光譜分析。催化的部分,同樣是先選擇環己烷作為受質,加入TBHP或是雙氧水作為氧化劑,發現也可將環己烷氧化成環己醇與環己酮,對催化反應的時間追蹤做研究,也可發現反應直到10小時都可持續進行。接著便針對改變催化受質進行一連串的同質實驗,使用過的受質包括環戊烷、正戊烷、正己烷、正庚烷、正辛烷、甲苯。
    而為了更進一步了解三核鐵簇化物在進行催化反應反應機構,因此我們利用對自由基相當靈敏的DMPO去檢測三核鐵金屬簇化物[FeIIFeIII(μ-O)FeIII(7-Dipy)(Cl)2]Cl2 (2) 在加入TBHP、受質環己烷與在甲醇溶劑底下進行催化反應後,立即偵測其EPR光譜,發現其光譜特性與HRP(horseradish peroxidase)/H2O2反應後類似。

    In previous study, we have developed a ligand 7-Dipy witch can form a trinuclear copper complex and trinuclear manganese complex. This trinuclear copper complex catalyst is able to oxidize the C-H bonds of cyclohexane (C6H14)(C-H bond energy 99.3kcal/mol) by adding hydrogen peroxide. Cyclohexane is oxidized to cyclohexanol (C6H13OH) and cyclohexanone (C6H12O) under ambient temperature and pressure. In addition, trinuclear manganese complex is able to oxidize the C-H bonds of cyclohexane (C6H14)(C-H bond energy 99.3kcal/mol) by adding TBHP. Cyclohexane is oxidized into cyclohexanol (C6H13OH) and cyclohexanone (C6H12O) under ambient temperature and pressure.
    In my syudy, the 7-Dipy ligand was first used to coordinate the iron ions. According to the ESI-MS spectra, trinuclear iron complex [FeIIFeIII(μ-O)FeIII(7-Dipy)(Cl)2]Cl2 (2) is first synthesized. Its corresponding UV, CV, and EPR spectroscopy are discussed for the property in the text. This trinuclear iron complex is applied to the catalytic reaction, adopting cyclohexane as substrate and TBHP or hydrogen peroxide as oxidant. Based on GC-MS analysis, cyclohexanol and cyclohexanone are the oxygenated products. A series of substrates, cyclopentane, pentane, hexane, heptane, octane and toluene, are also employed for exploring the activity of trinuclear iron complex.
    To further understand the trinuclear iron complex [FeIIFeIII(μ-O)FeIII(7-Dipy)(Cl)2]Cl2 (2) carrying out catalytic reaction are free radical reaction mechanism or oxene insertion mechanism. Therefore, we designed a series of experiments using very sensitive to free radicals, DMPO to detect the trinuclear iron complex [FeIIFeIII(μ-O)FeIII(7-Dipy)(Cl)2]Cl2 (2) by adding H2O2 for the catalytic reaction whether involvement free radical mechanism. EPR spectra show an unique radical DMPO signal, which is similar to the reaction of HRP/H2O2-DMPO.

    中文摘要 IV Abstract VI 一 前言 1 二 實驗部分 6 2.1 使用藥品與儀器 6 2.2 3,3’-(1,4-diazepane-1,4-diyl)bis(1-chloropropan-2-ol)之合成 8 2.3 7-Dipy之合成 9 2.4三核鐵金屬簇離子化合物[FeIIFeIII(μ-O)FeIII(7-Dipy)(Cl)2]Cl2之合成 10 2.5產物的鑑定 12 三 結果與討論 13 3.1三核鐵金屬簇離子化合物[FeIIFeIII(μ-O)FeIII(7-Dipy)(Cl)2]Cl2的ESI、EPR、UV及CV圖譜討論 13 3.2三核鐵金屬簇離子化合物[FeIIFeIII(μ-O)FeIII(7-Dipy)(Cl)2]Cl2與環己烷的催化反應,以TBHP作為氧化劑 18 3.3三核鐵金屬簇離子化合物[FeIIFeIII(μ-O)FeIII(7-Dipy)(Cl)2]Cl2與環己烷的催化反應,以雙氧水作為氧化劑 24 3.4三核鐵金屬簇離子化合物[FeIIFeIII(μ-O)FeIII(7-Dipy)(Cl)2]Cl2與甲苯的催化反應 27 3.5三核鐵金屬簇離子化合物[FeIIFeIII(μ-O)FeIII(7-Dipy)(Cl)2]Cl2與環戊烷的催化反應 30 3.6三核鐵金屬簇離子化合物[FeIIFeIII(μ-O)FeIII(7-Dipy)(Cl)2]Cl2與正戊烷的催化反應 32 3.7三核鐵金屬簇離子化合物[FeIIFeIII(μ-O)FeIII(7-Dipy)(Cl)2]Cl2與正己烷的催化反應 34 3.8三核鐵金屬簇離子化合物[FeIIFeIII(μ-O)FeIII(7-Dipy)(Cl)2]Cl2與正庚烷的催化反應 37 3.9三核鐵金屬簇離子化合物[FeIIFeIII(μ-O)FeIII(7-Dipy)(Cl)2]Cl2與正辛烷的催化反應 40 3.10改變催化時間,對三核鐵金屬簇離子化合物[FeIIFeIII(μ-O)FeIII(7-Dipy)(Cl)2]Cl2進行催化的影響 44 3.11三核鐵金屬簇離子化合物[FeIIFeIII(μ-O)FeIII(7-Dipy)(Cl)2]Cl2與TBHP反應時中間物之EPR研究 47 四 結論 50 五 參考資料 51 六 附圖 56

    1. Periana, R. A.; Bhalla, G.; Tenn, W. J.; Young, K. J. H.; Liu, X. Y.; Mironov, O.; Jones, C. J.; Ziatdinov, V. R., Perspectives on some challenges and approaches for developing the next generation of selective, low temperature, oxidation catalysts for alkane hydroxylation based on the CH activation reaction. J. Mol. Catal. A-Chem. 2004, 220 (1), 7-25.
    2. Shindell, D. T.; Faluvegi, G.; Koch, D. M.; Schmidt, G. A.; Unger, N.; Bauer, S. E., Improved Attribution of Climate Forcing to Emissions. Science 2009, 326 (5953), 716-718.
    3. Hanson, R. S.; Hanson, T. E., Methanotrophic bacteria. Microbiol. Rev. 1996, 60 (2), 439-471.
    4. Chan, S. I.; Chen, K. H. C.; Yu, S. S. F.; Chen, C. L.; Kuo, S. S. J., Toward delineating the structure and function of the particulate methane monooxygenase from methanotrophic bacteria. Biochemistry 2004, 43 (15), 4421-4430.
    5. Feig, A. L.; Lippard, S. J., Reactions of nonheme iron(II) centers with dioxygen in biology and chemistry. Chem. Rev. 1994, 94 (3), 759-805.
    6. Lipscomb, J. D., Biochemistry of the Soluble Methane Monooxygenase. Annu. Rev. Microbiol. 1994, 48, 371-399.
    7. Semrau, J. D.; Chistoserdov, A.; Lebron, J.; Costello, A.; Davagnino, J.; Kenna, E.; Holmes, A. J.; Finch, R.; Murrell, J. C.; Lidstrom, M. E., Particulate methane monooxygenase genes in methanotrophs. J. Bacteriol. 1995, 177 (11), 3071-3079.
    8. Lieberman, R. L.; Rosenzweig, A. C., Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature. 2005, 434 (7030), 177-182.
    9. Stolyar, S.; Costello, A. M., Role of multiple gene copies in particulate methane monooxygenase activity in the methane-oxidizing bacterium Methylococcus capsulatus Bath. Microbiology-Sgm. 1999, 145, 1235-1244.
    10. Chan, S. I.; Wang, V. C. C., Redox potentiometry studies of particulate methane monooxygenase: Support for a trinuclear copper cluster active site. Angewandte Chemie-International Edition. 2007, 46 (12), 1992-1994.
    11. Yu, S. S. F.; Chen, K. H. C., Production of high-quality particulate methane monooxygenase in high yields from Methylococcus capsulatus (Bath) with a hollow-fiber membrane bioreactor. Journal of Bacteriology. 2003, 185 (20), 5915-5924.
    12. Nguyen, H. H. T.; Elliott S. J., The particulate methane monooxygenase from methylococcus capsulatus (Bath) is a novel copper-containing three-subunit enzyme - Isolation and characterization. Journal of Biological Chemistry. 1998, 273 (14), 7957-7966.
    13. Nguyen, H. H. T.; Nakagawa, K. H., X-ray absorption and EPR studies on the copper ions associated with the particulate methane monooxygenase from Methylococcus capsulatus (Bath). Cu(I) ions and their implications. Journal of the American Chemical Society. 1996, 118 (50), 12766-12776.
    14. Yoshizawa, K.; Suzuki, A.; Shiota, Y.; Yamabe, T., Conversion of methane to methanol on diiron and dicopper enzyme models of methane monooxygenase: A theoretical study on a concerted reaction pathway. Bull. Chem. Soc. Jpn. 2000, 73 (4), 815-827.
    15. Yoshizawa, K., Two-step concerted mechanism for methane hydroxylation on the diiron active site of soluble methane monooxygenase. J. Inorg. Biochem. 2000, 78 (1), 23-34.
    16. Wilkinson, B.; Zhu, M.; Priestley, N. D.; Nguyen, H. H. T.; Morimoto, H.; Williams, P. G.; Chan, S. I.; Floss, H. G., A concerted mechanism for ethane hydroxylation by the particulate methane monooxygenase from Methylococcus capsulatus (Bath). J. Am. Chem. Soc. 1996, 118 (4), 921-922.
    17. Valentine, A. M.; Wilkinson, B.; Liu, K. E.; KomarPanicucci, S.; Priestley, N. D.; Williams, P. G.; Morimoto, H.; Floss, H. G.; Lippard, S. J., Tritiated chiral alkanes as substrates for soluble methane monooxygenase from Methylococcus capsulatus (Bath): Probes for the mechanism of hydroxylation. J. Am. Chem. Soc. 1997, 119 (8), 1818-1827.
    18. Valentine, A. M.; LeTadic-Biadatti, M. H.; Toy, P. H.; Newcomb, M.; Lippard, S. J., Oxidation of ultrafast radical clock substrate probes by the soluble methane monooxygenase from Methylococcus capsulatus (Bath). J. Biol. Chem. 1999, 274 (16), 10771-10776.
    19. Elliott, S. J.; Zhu, M.; Tso, L.; Nguyen, H. H. T.; Yip, J. H. K.; Chan, S. I., Regio- and stereoselectivity of particulate methane monooxygenase from Methylococcus capsulatus (Bath). J. Am. Chem. Soc. 1997, 119 (42), 9949-9955.
    20. Huang, D. S.; Wu, S. H.; Wang, Y. S.; Yu, S. S. F.; Chan, S. I., Determination of the carbon kinetic isotope effects on propane hydroxylation mediated by the methane monooxygenases from Methylococcus capsulatus (Bath) by using stable carbon isotopic analysis. ChemBioChem 2002, 3 (8), 760-765.
    21. Yu, S. S. F.; Wu, L. Y.; Chen, K. H. C.; Luo, W. I.; Huang, D. S.; Chan, S. I., The stereospecific hydroxylation of 2,2-H-2(2) butane and chiral dideuteriobutanes by the particulate methane monooxygenase from Methylococcus capsulatus (bath). J. Biol. Chem. 2003, 278 (42), 40658-40669.
    22. Baik, M. H.; Gherman, B. F.; Friesner, R. A.; Lippard, S. J., Hydroxylation of methane by non-heme diiron enzymes: Molecular orbital analysis of C-H bond activation by reactive intermediate Q. J. Am. Chem. Soc. 2002, 124 (49), 14608-14615.
    23. Baik, M. H.; Newcomb, M.; Friesner, R. A.; Lippard, S. J., Mechanistic studies on the hydroxylation of methane by methane monooxygenase. Chem. Rev. 2003, 103 (6), 2385-2419.
    24. Chen, P. P. Y.; Chan, S. I., Theoretical modeling of the hydroxylation of methane as mediated by the particulate methane monooxygenase. J. Inorg. Biochem. 2006, 100 (4), 801-809.
    25. Cole, A. P.; Root, D. E.; Mukherjee, P.; Solomon, E. I.; Stack, T. D. P. Science 1996, 273, 1848.
    26. Machonkin, T. E.; Mukherjee, P., The EPR spectrum of a Cu(II/II/III) cluster: anisotropic exchange in a bent Cu(II)2O2 core. Inorganica Chimica Acta. 2002, 341, 39-44.
    27. Root, D. E.; Henson, M. J., Electronic and geometric structure of a trinuclear mixed-valence copper(II,II,III) cluster. Journal of the American Chemical Society. 1998, 120(20), 4982-4990.
    28. Chen, P. P. Y.; Yang, R. B. G.; Lee, J. C. M.; Chan, S. I., Facile O-atom insertion into C-C and C-H bonds by a trinuclear copper complex designed to harness a singlet oxene. Proc. Natl. Acad. Sci. U. S. A. 2007, 104 (37), 14570-14575.
    29. Knapp, S.; Trope, A. F.; Theodore, M. S.; Hirata, N.; Barchi, J. J., Ring expansion of ketones to 1,2-keto thioketals. Control of bond migration. J. Org. Chem. 1984, 49 (4), 608-614.
    30. Sobkowiak, A.; Qui, A.; Liu, X.; Llobet, A.; Sawyer, D. T., Copper(I)/(t-BuOOH)-Induced activation of dioxygen for the ketonization of methylenic carbons. J. Am. Chem. Soc. 1993, 115 (2), 609-614.
    31. Kopylovich, M. N., Mahmudov, K. T., et al. Ortho-Hydroxyphenyl -hydrazo-beta-Diketones: Tautomery, Coordination Ability, and Catalytic Activity of Their Copper(II) Complexes toward Oxidation of Cyclohexane and Benzylic Alcohols. Inorganic Chemistry. 2011, 50(3), 918-931.
    32. 簡佑芩,國立台灣師範大學化學研究所碩士論文,2010.
    33. 姜博仁,國立台灣師範大學化學研究所碩士論文,2010.
    34. 藍國峻,國立台灣師範大學化學研究所碩士論文,2010.

    下載圖示
    QR CODE