簡易檢索 / 詳目顯示

研究生: 蕭博元
Hsiao, Po-Yuan
論文名稱: 準直性奈米碳管合成之技術開發
Development of synthesizing well-aligned carbon nanotubes
指導教授: 楊啓榮
Yang, Chii-Rong
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 131
中文關鍵詞: 多壁奈米碳管熱裂解化學汽相沉積準直性陣列結構
英文關鍵詞: Multi-walled carbon nanotube (MWCNT), thermal chemical vapor deposition (thermal CVD), well-aligned array structure
論文種類: 學術論文
相關次數: 點閱:141下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著奈米科技研究風潮的興起,許多材料於奈米尺度下的特殊物理與化學性質,逐漸被人所發現,而奈米碳管更是其中價值最高,潛力最大,並且最受矚目的先進材料。有鑒於奈米碳管優異的性質和未來的應用性,以及期望盡速實現其與微/奈米機電系統技術接軌之目標,故本研究選擇於半導體製程中,扮演重要角色之化學汽相沉積(chemical vapor deposition, CVD) 技術,進行奈米碳管之製備,以期有效促進奈米碳管與半導體製程相容性的發展,而化學汽相沉積法中,又以熱裂解法之系統較單純,且其製備出之碳管之結晶品質也較佳。因此,本研究主要以熱裂解化學汽相沉積(Thermal-CVD)技術為骨幹,實現製作準直性奈米碳管陣列結構之目的。
根據研究結果顯示,本研究所製備之奈米碳管為多壁形式,且竹節狀(bamboo-like)奈米碳管,以及其頂部具觸媒顆粒的現象,可判斷其成長機制為完全成長。拉曼頻譜分析其ID/IG值約為0.626,顯示此多壁奈米碳管之結構與結晶品質相當良好。
選擇鎳觸媒金屬,並施以適當裂解溫度與活化參數,再藉由輔助及碳源氣體比例間的控制,可獲得約20 cm2趨近完美之準直性奈米碳管陣列結構。當使用7.5 vol之氨/氬混合氣進行前處理,最後於1050 C以甲烷30 sccm及氬氣370 sccm等條件,進行10分鐘之成長後,能合成出垂直高度83.33 m,管徑為57 nm,且深寬比可逼近1500:1,並具可選區成長之奈米碳管準直性陣列結構,而以甲烷30 sccm、氨氣30 sccm及氬氣340 sccm等條件,所製備之奈米碳管則具最佳表面形貌。
另外,無論於活化或是成長階段加入氨氣,均有助奈米碳管成長之準直性,倘若活化與成長階段間為不連續關係,則將出現碳管密度及高度不足等現象。於成長階段通入適量氨氣,可有效提升奈米碳管之準直性,並抑制管徑的增加,若氨氣與碳源間之比例高於1.66,則氨氣對碳管之縱向蝕刻速率將大於橫向成長速率,導致粗且短的碳管生成,並產生奈米碳管陣列之垂直高度,由氣體入口端向出口端遞增之不均現象。若同時將不同材質之基板,同時置於爐管中進行成長,推測可能的原因為高溫下鎳金屬與基材形成不同形態或組成的化合物,導致觸媒金屬的活性因而改變,直接影響觸媒對碳源的吸收行為,遂發生具材質選擇性之成長現象。
奈米碳管成長之參數測試已告一段落,未來將進行準直性奈米碳管陣列結構之物理性質量測,例如導電性、氣體感測能力、熱傳導性、可濕性、場發射性能及抗反射頻譜等,藉而尋求更多元之應用層面,例如生物感測器、氣體感測器、燃料電池、散熱元件、太陽能電池抗反射層、場發射顯示器等元件之開發。

With the raise of nanotechnology researching, many special physical and chemical properties were found gradually in nanoscale. Most of all, carbon nanotube (CNT) is the advanced material which has the highest value, greatest potential, and attract the most attention. Because of excellent properties and many applications for CNT, and it is expected to achieve for integrating with micro/nano-electro mechanical-system technology as soon as possible. As thus, this study will select chemical vapor deposition (CVD), which plays the important role in semi-conductor process technology. Above all, CNT which fabricated by thermal-CVD has better crystalline, and its system is more simple than others. So this study will use thermal-CVD to fabricate a well-aligned CNT array structure.
According to experimental results, the variety of CNTs which synthesized by this study are classified in multi-walled carbon nanotubes (MWCNTs). Fully growth mechanism could be proved due to the bamboo-like structure and catalysts at the top of CNTs. Follow the ID/IG from Raman spectrum analysis of 0.626, it indicates the MWCNTs with good structure and crystallization.
The well-aligned CNT which is fabricated by Ni catalyst, temperature, activation and growth parameter with a nearly perfect arrangement can be obtained in the sample of 20 cm2. When 7.5 NH3/Ar is used in pretreatment stage, then use CH4/Ar (30/370 sccm) to synthesize CNTs during 10 minutes at 1050 C, the growth height of CNT is about 83.33 m; its diameter is about 57 nm, such that the aspect ratio of the nanotube can reach about 1500:1, and it has the advantage of in situ synthesis. Otherwise, growth stage uses by CH4/NH3/Ar (30/30/340 sccm) will obtain the best profile for CNT.
NH3 which promotes well-alignment of CNTs remarkably has been confirmed by this study. Especially, pretreatment and growth stage must be successional, and a nearly perfect arrangement structure will be fabricated. Besides, CNTs growth with adding NH3 at growth stage, it could improve well-alignment and control increase of diameter for CNTs. However, once the ratio which NH3 versus CH4 (NH3/CH4) is higher than 1.66, the lengthways etching rate will be higher than transverse etching rate, the phenomenon of nonuniform and podgy CNTs will occur. If CNTs grown on different substates at the same process time, this situation might change activity of Ni catalyst cause by interact between Ni and substrate under high temperature, and the change of activity brought growth selectivity for CNTs.
In future, this study will keep measuring the physical properties which include conductivity, wettability, field emission properity and reflective spectrum et cetera for the CNTs array, and try to search more and more applications, for example: bio-sensors, gas sensors, fuel cells, cooling devices, anti-reflection layer of solar cell and field emission display et cetera.

摘要 I 總目錄 V 圖目錄 VIII 表目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 微機電系統簡介 2 1.3 奈米科技簡介 5 1.3.1 奈米科技市場與展望 6 1.4 奈米碳管簡介 8 1.4.1 奈米碳管發展史 8 1.4.2 奈米碳管的結構與性質 9 1.4.3 奈米碳管的應用與展望 10 第二章 文獻回顧 24 2.1 奈米碳管合成方式 24 2.1.1 弧光蒸發法(arc-evaporation process) 24 2.1.2 雷射剝蝕法(laser ablation process) 25 2.1.3 太陽能法(solar energy process) 25 2.1.4 水熱法(hydrothermal process) 26 2.1.5 溶劑受熱法(solvothermal process) 26 2.1.6 化學汽相沉積法(chemical vapor deposition process) 26 2.2 奈米碳管成長機制 35 2.2.1 觸媒體擴散(bulk diffusion)成長 35 2.2.2 觸媒表面擴散(surface diffusion)成長 35 2.2.3 頂部與底部成長(tip and root growth) 36 2.2.4 完全成長(fully growth) 36 2.2.5 氣-液-固(vapor-liquid-solid, VLS)成長 36 2.3 實驗參數對奈米碳管合成之影響 42 2.3.1 觸媒參數之影響 42 2.3.2 基板之影響 42 2.3.3 前處理參數之影響 43 2.3.4 成長輔助氣體之影響 43 2.3.5 成長溫度之影響 43 2.3.6 成長時間之影響 44 2.4 拉曼光譜 (Raman spectrum) 53 2.5 研究動機與目的 55 第三章 實驗設計與規劃 56 3.1 實驗規劃 56 3.1.1 準直性奈米碳管陣列之製備 56 3.1.2 奈米碳管成長系統設計 57 3.1.3 試片準備 58 3.1.4 奈米碳管之成長 59 3.2 參數調變設計 64 3.3 實驗注意事項 67 3.4 儀器與設備 68 第四章 實驗結果與討論 74 4.1 初期成長測試 74 4.1.1 碳源流量 74 4.1.2 成長溫度 74 4.1.3 成長輪廓 75 4.1.3 觸媒層厚度 76 4.2 碳源比例影響 86 4.3 氨氣加入時間點之影響 91 4.4 氨氣影響 96 4.4.1 活化氨氣比例之影響 96 4.4.2 輔助成長之氨氣比例影響 96 4.5 基板之影響 104 4.6 圖案化與特性分析 112 4.6.1 圖案化奈米碳管陣列結構 112 4.6.2 穿透式電子顯微鏡檢測 112 4.6.3奈米碳管薄膜之X光繞射特性分析 113 4.6.4奈米碳管薄膜之拉曼光譜特性分析 114 第五章 結論與未來展望 123 5.1 結論 123 5.2 未來展望 125 參考文獻 126

1.R. Feynman, "There’s plenty of room at the bottom", Journal of Microelectromechanical system 1, 1 (1992).
2.楊啟榮 等人, "微機電系統技術與應用", 精密儀器發展中心, 第四章, pp.142 (2003).
3.楊啟榮, "微機電系統技術導論", 國立台灣師範大學上課講義 (2001).
4.林學恆, "奈米市場全球發燒", 經濟日報, 8月7日 (2003).
5.石川正道, "奈米科技與產業導論", 普林斯頓國際有限公司, pp.154-159 (2004).
6.成功大學APCOT國際研討會報導.
7.ROCNS, "Nanotechnology Market Forecast to 2013", (2008).
8.成章瑜, "新科學創造台灣競爭力", 遠見雜誌, 11月號, pp.81-84 (2002).
9.奈米國家型科技計劃內容.
10.H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl and R. E. Smalley, " C60: Buckminsterfullerene ", Nature, 318, pp.162-163 (1985).
11.http://en.wikipedia.org/wiki/Fullerene
12.W. Kratschmer, L. D. Lamb and K.Fostiropoulos, "Solid C60: a new form of carbon", Nature, 347, pp.354-358 (1990).
13.A. Mait, C. J. Brabec, C. Roland and J. Bernholc, "Theory of carbon nanotube growth", Physical Review B, 52, pp.14850-14858 (1995).
14.S. Iijima, "Helical microtubules of graphitic carbon", Nature, 354, pp.56–58 (1991).
15.成會民, "奈米碳管", 五南出版社 (2004).
16.L. M. Peng, Z. L. Zhang, Z. Q. Xue, Q. D. Wu, Z. N. Gu and D. G. Pettifor, "Stability of carbon nanotubes:How small can they be? ",Physical Review Letters, 85, 15, pp.3249–3252 (2000).
17.http://knol.google.com/k/carbon-nanotubes#
18.P. Harris, "Carbon Nanotubes and Related Structure", Cambridge Press (1999).
19.http://fgmdb.kakuda.jaxa.jp/SSPSHTML/e-001st1.html
20.J. C. Charlier and J. P Issi, "Electronic structure and quantum transport in carbon nanotubes", Applied Physics A:Materials Science & Processing, 67, pp.79–87(1998).
21.M. D. Haus, G. Dresselhaus, P. Eklund and R. Saito, "Carbon nanotubes", Physics World, January, 33 (1998).
22.J. W. Mintmire and C. T. White, "First-principles band structures of armchair nanotubes", Applied Physics A: Materials Science & Processing, 67, pp.65–69 (1998).
23.L. Jin, C. Bower and O. Zhou, "Alignment of carbon nanotubes in a polymer matrix by mechanical stretching", Applied Physics Letters, 73 (9), pp.1197–1199 (1998).
24.J. A. Misewich, R. Martel, P. Avouris, J. C. Tsang, S. Heinze and J. Tersoff, "Electrically induced optical emission from a carbon nanotube FET", Science 300, pp.783–786 (2003).
25.http://advantage.bobrosenbaum.com/issues/nanadvant_aug04.htm
26.J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, Sh. Peng, K. Cho, H. Dai, "Nanotube molecular wires as chemical sensors", Science, 287, pp.622–625(2000).
27.K. Yamamoto, G. Shi, T. Zhou, F. Xu, J. Xu, T. Kato, J. Y. Jin and L. Jin, "Study of carbon nanotubes-HRP modified electrode and its application for on-line biosensor", Analyst, 128, pp.249–254 (2003).
28.T. Kawano, H. C. Chiamori, M. Suter, Q. Zhou, B. D. Sosnowchik and L. Lin, "An electrothermal carbon nanotube gas sensor", Nano letters, 7 (12), pp.3686–3690 (2009).
29.G. Nagy, M. Levy, R. Scarmozzino, R. M. Osgood, H. Dai, R. E. Smalley, C. A. Michaels, G. W. Flynn and G. F. McLane, "Carbon nanotube tipped atomic force microscopy for measurement of <100 nm etch morphology on semiconductors", Applied Physics Letters, 73 (4), pp.529–531 (1998).
30.L. Dong, X. Tao, L. Zhang, X. Zhang and B. J. Nelson, "Nanorobotic spot welding: controlled metal deposition with attogram precision from copper-filled carbon nanotubes", Nano Letters, 7, 1, pp.58–63 (2007).
31.Z. Insepov, D. Wolf and A. Hassanein, "Nanopumping Using Carbon Nanotubes", Nano Letters, 6, 9, pp.1893–1895 (2006).
32.J. Han, A. Globus, R. Jaffe and G. Deardorff, "Molecular dynamics simulation of carbon nanotube based gears", Nanotechnology, 8, pp.95–102(1997).
33.J. Wei, Y. Jia, Q. Shu, Z. Gu, K. Wang, D. Zhuang, G. Zhang, Z. Wang, J. Luo, A. Cao and D. Wu, "Double-Walled Carbon Nanotube Solar Cells", Nano Letters, 7, 8, pp. 2317–2321 (2007).
34.T. W. Ebbesen and P. M. Ajayan, "Large-scale synthesis of carbon nanotubes", Nature, 358, 220–222 (1992).
35.Y. Ando, "Growing carbon nanotubes", Martials today, pp.22–29 (2004).
36.J. M. Lambert, P. M. Ajayan, P. Bernier, J. M. Planeix, V. Brotons, B. Coq and J. Castaing, "Improving conditions towards isolating single-shell carbon nanotubes", Chemical Physics Letters, 226, pp.364–371 (1994).
37.T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek, D. T. Colbert and R. E. Smalley, "Self-assembly of tubular fullerenes", The Journal of Physical Chemistry, 99, pp.10694–10697 (1995).
38.A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley, "Crystalline Ropes of Metallic Carbon Nanotubes", Science, vol. 273, pp. 483–487 (1996).
39.C. Journet and P. Bernier, "Production of carbon nanotubes", Applied physic A, 67, pp.1–9 (1998).
40.Z. Kang, E. Wang, L. Gao, S. Lian, M. Jiang, C. Hu and L. Xu, "One-step water-assisted synthesis of high-quality carbon nanotubes directly from graphite", Journal of the American Chemical Society, 125, pp.13652–13653 (2003).
41.X. Wang, J. Lu, Y. Xie, G. Du, Q. Guo and S. Zhang, "A novel route to multiwalled carbon nanotubes and carbon nanorods at low temperature", The Journal of Physical Chemistry B, 106(5), pp.933–937 (2002).
42.A. Oberlin, M. Endo and T. Koyama, "High resolution electron microscope observations of graphitized carbon fibers", Carbon, 14, pp.133–135 (1976).
43.J. Kong, A. M. Cassell, H. Dai, "Chemical vapor deposition of methane for single-walled carbon nanotubes", Chemical Physics Letters, 292, pp.567–574 (1998).
44.H. Xiao, "Introduction to semiconductor manufacturing technology", upper Saddle River, New jersey, the Pearson Prentice Hall Inc (2001).
45.M. Meyyappan, L. Delzeit, A. Cassell1 and D.Hash, "Carbon nanotube growth by PECVD: a review", Plasma Sources Science and Technology, 12, pp.205–216 (2003).
46.Y. M. Shyu, " Low temperature growth of carbon nanotubes by chemical vapor deposition and plasma assisted chemical vapor deposition", National Cheng Kung University (2001).
47.J. I. B. Wilson, N. Scheerbaum, S. Karim, N. Polwart, P. John, Y. Fan and A.G. Fitzgerald, "Low temperature plasma chemical vapour deposition of carbon nanotubes", Diamond and Related Materials, 11, pp.918–921 (2002).
48.http://www.fy.chalmers.seatomresearchnanotubesexperimental.xml
49.R. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates and R. J. Waite, "Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene", Journal of Catalysis, 26(1), pp. 51–62 (1972).
50.S. B. Sinnott, R. Andrews, D. Qian, A. M. Rao, Z. Mao, E. C. Dickey and F. Derbyshire, "Model of carbon nanotube growth through chemical vapor deposition", Chemical Physics Letters, 315, pp.25 (1999).
51.X. Chen R. Wang, J. Xu and D. Yu, "TEM investigation on the growth mechanism of carbon nanotubes synthesized by hot-filament chemical vapor deposition", Micron, 35, pp.455–460 (2004).
52.R. S. Wagner and W. C. Ellis, "Vapor‐liquid‐solid mechanism of single crystal growth", Applied Physic Letters, 4, pp.89–90 (1964).
53.E. F. Kukovitsky, S. G. L’vov, N. A. Sainov, "VLS-growth of carbon nanotubes from the vapor ", Chemical Physics Letters, 317, pp.65–70 (2000).
54.J. Gavillet, A. Loiseau, C. Journet, F. Willaime, F. Ducastelle and J. C. Charlier, "Root-growth mechanism for single-wall carbon nanotubes", Physical Review Letters, 87, pp. 275504 (2001).
55.Z. Y. Juang, "The study of growth mechanism of carbon nanotubes using thermal pyrolysis chemical vapor deposition method", National Tsing Hua University (2004).
56.M. Jung, K. Y. Eun, J. K. Lee, Y. J. Baik, K. R. Lee and J. W. Park, "Growth of carbon nanotubes by chemical vapor deposition", Diamond and Related Materials, 10, pp.1235–1240 (2001).
57.J. H. Han, H. J. Kim, M. H. Yang, C. W. Yang, J. B. Yoo, C. Y. Park, Y. H. Song and K. S. Nam, "Effects of thickness of Ni layer deposited on glass substrate on thegrowth and emission properties of carbon nanotubes", Materials Science and Engineering C, 16, pp.65–68 (2001).
58.C. J. Lee, J. Park and J. A. Yu, "Catalyst effect on carbon nanotubes synthesized by thermal vapor chemical deposition", Chemical Physics Letters, 360, pp.250–255 (2002).
59.S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell and H. Dai, "Self-oriented regular arrays of carbon nanotubes and their field emission properties", Science, 283, pp.512–514 (1999).
60.J. W. Ward, B. Q. Wei and P. M. Ajayan, "Substrate effects on the growth of carbon nanotubes by thermal decomposition of methane", Chemical Physics Letters, 376, pp.717–725 (2003).
61.T. Y. Kim, K. R. Lee, K. Y. Eun and K. H. Oh, "Carbon nanotube growth enhanced by nitrogen incorporation", Chemical Physics Letters, 372, pp.603–607 (2003).
62.M. Jung, K. Y. Eun, Y. J. Baik, K. R. Lee, J. K. Shin and S. T. Kim, "Effect of NH3 environmental gas on the growth of aligned carbon nanotube in catalystically pyrolizing C2H2", Thin Solid Films 398–399, pp.150–155 (2001).
63.C. J. Lee, J. Park, Y. Huh and J. Y. Lee, "Temperature effect on the growth of carbon nanotubes using thermal chemical vapor deposition", Chemical Physics Letters, 343, pp.33–38 (2001).
64.H. Cui, G. Eres, J. Y. Howe, A. Puretkzy, M. Varela, D. B. Geohegan and D. H. Lowndes, "Growth behavior of carbon nanotubes on multilayered metal catalyst film in chemical vapor deposition", Chemical Physics Letters, 374, 222–228 (2003).
65.A. Smekal, "The quantum theory of dispersion", Naturwissenschaften, 11, pp.873–875 (1923).
66.C. V. Raman, "A new radiation", Indian Journal of Physics, 2, pp.387–398 (1928).
67.F. Tuinstra and J. L. Koenig, "Raman spectrum of graphite", The Journal of Physical Chemistry, 53(3), pp.1126–1130 (1970).
68.M. Zhang and J. Li, "Carbon nanotube in different shapes", Materialstoday, 12(6), pp.12–18 (2009).
69.國科會精密儀器中心, "奈米檢測技術", 全華出版社 (2009).
70.M. Sveningsson, R. Morjan, O. Nerushev, Y. Sato, J. Bäckström, E Campbell and F. Rohmund, "Raman spectroscopy and field-emission propertiesof CVD-grown carbon-nanotube films", Applied Physics A, 73, pp. 409–418 (2001).

無法下載圖示 本全文未授權公開
QR CODE